Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Elife ; 132024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180472

RESUMO

Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.


Assuntos
Estado de Consciência , Alucinógenos , Humanos , Ratos , Camundongos , Animais , Córtex Cerebral/fisiologia , Inconsciência/induzido quimicamente , Tálamo/fisiologia , Eletroencefalografia
2.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37939085

RESUMO

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Assuntos
Neurônios , Células Piramidais , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Dendritos/fisiologia , Tálamo/fisiologia , Mamíferos
3.
Cell Rep ; 42(8): 112844, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498741

RESUMO

The neurobiological mechanisms of arousal and anesthesia remain poorly understood. Recent evidence highlights the key role of interactions between the cerebral cortex and the diffusely projecting matrix thalamic nuclei. Here, we interrogate these processes in a whole-brain corticothalamic neural mass model endowed with targeted and diffusely projecting thalamocortical nuclei inferred from empirical data. This model captures key features seen in propofol anesthesia, including diminished network integration, lowered state diversity, impaired susceptibility to perturbation, and decreased corticocortical coherence. Collectively, these signatures reflect a suppression of information transfer across the cerebral cortex. We recover these signatures of conscious arousal by selectively stimulating the matrix thalamus, recapitulating empirical results in macaque, as well as wake-like information processing states that reflect the thalamic modulation of large-scale cortical attractor dynamics. Our results highlight the role of matrix thalamocortical projections in shaping many features of complex cortical dynamics to facilitate the unique communication states supporting conscious awareness.


Assuntos
Córtex Cerebral , Propofol , Tálamo , Estado de Consciência , Núcleos Talâmicos , Propofol/farmacologia , Vias Neurais
4.
Neuroimage ; 222: 117224, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795658

RESUMO

Recent neuroimaging experiments have defined low-dimensional gradients of functional connectivity in the cerebral cortex that subserve a spectrum of capacities that span from sensation to cognition. Despite well-known anatomical connections to the cortex, the subcortical areas that support cortical functional organization have been relatively overlooked. One such structure is the thalamus, which maintains extensive anatomical and functional connections with the cerebral cortex across the cortical mantle. The thalamus has a heterogeneous cytoarchitecture, with at least two distinct cell classes that send differential projections to the cortex: granular-projecting 'Core' cells and supragranular-projecting 'Matrix' cells. Here we use high-resolution 7T resting-state fMRI data and the relative amount of two calcium-binding proteins, parvalbumin and calbindin, to infer the relative distribution of these two cell-types (Core and Matrix, respectively) in the thalamus. First, we demonstrate that thalamocortical connectivity recapitulates large-scale, low-dimensional connectivity gradients within the cerebral cortex. Next, we show that diffusely-projecting Matrix regions preferentially correlate with cortical regions with longer intrinsic fMRI timescales. We then show that the Core-Matrix architecture of the thalamus is important for understanding network topology in a manner that supports dynamic integration of signals distributed across the brain. Finally, we replicate our main results in a distinct 3T resting-state fMRI dataset. Linking molecular and functional neuroimaging data, our findings highlight the importance of the thalamic organization for understanding low-dimensional gradients of cortical connectivity.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Lobo Temporal/fisiopatologia , Tálamo/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA