Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 248: 109870, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401791

RESUMO

Delayed therapeutic responses and limited efficacy are the main challenges of existing antidepressant drugs, thereby incentivizing the search for new potential treatments. Cannabidiol (CBD), non-psychotomimetic component of cannabis, has shown promising antidepressant effects in different rodent models, but its mechanism of action remains unclear. Herein, we investigated the antidepressant-like effects of repeated CBD treatment on behavior, neuroplasticity markers and lipidomic profile in the prefrontal cortex (PFC) of Flinders Sensitive Line (FSL), a genetic animal model of depression, and their control counterparts Flinders Resistant Line (FRL) rats. Male FSL animals were treated with CBD (10 mg/kg; i.p.) or vehicle (7 days) followed by Open Field Test (OFT) and the Forced Swimming Test (FST). The PFC was analyzed by a) western blotting to assess markers of synaptic plasticity and cannabinoid signaling in synaptosome and cytosolic fractions; b) mass spectrometry-based lipidomics to investigate endocannabinoid levels (eCB). CBD attenuated the increased immobility observed in FSL, compared to FRL in FST, without changing the locomotor behavior in the OFT. In synaptosomes, CBD increased ERK1, mGluR5, and Synaptophysin, but failed to reverse the reduced CB1 and CB2 levels in FSL rats. In the cytosolic fraction, CBD increased ERK2 and decreased mGluR5 expression in FSL rats. Surprisingly, there were no significant changes in eCB levels in response to CBD treatment. These findings suggest that CBD effects in FSL animals are associated with changes in synaptic plasticity markers involving mGluR5, ERK1, ERK2, and synaptophysin signaling in the PFC, without increasing the levels of endocannabinoids in this brain region.


Assuntos
Canabidiol , Depressão , Ratos , Masculino , Animais , Depressão/tratamento farmacológico , Depressão/genética , Canabidiol/farmacologia , Endocanabinoides/metabolismo , Sinaptofisina/metabolismo , Antidepressivos/farmacologia , Córtex Pré-Frontal , Plasticidade Neuronal , Modelos Animais de Doenças
2.
Eur J Pharmacol ; 786: 29-35, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27235984

RESUMO

Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that has been shown to induce a rapid antidepressant effect in treatment-resistant patients. Vortioxetine is a multimodal-acting antidepressant that exert its therapeutic activity through serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibition and modulation of several 5-HT receptors. In clinical trials, vortioxetine improves depression symptoms and cognitive dysfunction. Neuroplasticity as well as serotonergic and glutamatergic signaling attain significant roles in depression pathophysiology and antidepressant responses. Here, we investigate the effects of ketamine and vortioxetine on gene expression related to serotonergic and glutamatergic neurotransmission as well as neuroplasticity and compare them to those of the selective serotonin reuptake inhibitor fluoxetine. Rats were injected with fluoxetine (10mg/kg), ketamine (15mg/kg), or vortioxetine (10mg/kg) at 2, 8, 12, or 27h prior to harvesting of the frontal cortex and hippocampus. mRNA levels were measured by real-time quantitative polymerase chain reaction (qPCR). The main finding was that vortioxetine enhanced plasticity-related gene expression (Mtor, Mglur1, Pkcα, Homer3, Spinophilin, and Synapsin3) in the frontal cortex at 8h after a single dose. Ingenuity pathway analysis of this subset of data identified a biological network that was engaged by vortioxetine and is plausibly associated with neuroplasticity. Transcript levels had returned to baseline levels 12h after injection. Only minor effects on gene expression were found for ketamine or fluoxetine. In conclusion, acute vortioxetine, but not fluoxetine or ketamine, transiently increased plasticity-related gene expression in the frontal cortex. These effects may be ascribed to the direct 5-HT receptor activities of vortioxetine.


Assuntos
Antidepressivos/farmacologia , Lobo Frontal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Plasticidade Neuronal/genética , Piperazinas/farmacologia , Sulfetos/farmacologia , Animais , Antidepressivos/administração & dosagem , Relação Dose-Resposta a Droga , Fluoxetina/farmacologia , Lobo Frontal/metabolismo , Lobo Frontal/fisiologia , Ácido Glutâmico/metabolismo , Ketamina/farmacologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Piperazinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Sulfetos/administração & dosagem , Fatores de Tempo , Vortioxetina
3.
Acta Neuropsychiatr ; 27(3): 189-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25697068

RESUMO

BACKGROUND: Chronic inflammation is implicated in numerous diseases, including major depression and type 2 diabetes mellitus (T2DM). Since depression and T2DM often co-exist, inflammatory pathways are suggested as a possible link. Hence, the establishment of an immune-mediated animal model would shed light on mechanisms possibly linking depression and metabolic alterations. OBJECTIVE: In this study we investigated a behavioural and metabolic paradigm following chronic infusion with low doses of lipopolysaccharide (LPS) using osmotic minipumps in male rats. METHODS: Behavioural testing consisted of evaluating activity level in the open field and depressive-like behaviour in the forced swim test. Metabolic assessment included measurement of body weight, food and water intake, and glucose and insulin levels during an oral glucose tolerance test. RESULTS: LPS-infused rats showed acute signs of sickness behaviour, but chronic LPS infusion did not induce behavioural or metabolic changes. CONCLUSION: These results suggest that although inflammation is immediately induced as indicated by acute sickness, 4 weeks of chronic LPS administration via osmotic minipumps did not result in behavioural changes. Therefore, this paradigm may not be a suitable model for studying the underlying mechanisms that link depression and T2DM.


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Lipopolissacarídeos/administração & dosagem , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Depressão/diagnóstico , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose/métodos , Insulina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA