Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 17: 1218595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637191

RESUMO

Background: Polygonatum sibiricum is an understory economic plant, and its dried rhizome is a traditional Chinese medicine. The purpose of this study was to connect the quality improvement of the understory plant P. sibiricum with specific microorganisms. Methods: Amplicon and metabolome sequencing were conducted for P. sibiricum interplanted under three types of trees and in the field, and the relationship between the microbiome and secondary metabolism was explored. Results: Principal component analysis (PCA) divided field cultivated and understory interplanted groups into two classes. A total of 95 different metabolites were found, with four expression patterns. The alpha diversity of rhizosphere bacteria and endosphere fungi in the understory interplanted group was significantly higher than that in the farmland cultivated group. There were 276 different rhizosphere microorganism genera among the four groups; however, only 33 different endosphere genera were observed, indicating that endophytic microbial diversity was relatively stable within the P. sibiricum rhizome, especially for endosphere bacteria. Cointertia analysis (CoIA) suggested that the metabolite changes in P. sibiricum induced by interplanting under different trees were more strongly affected by rhizosphere microorganisms than by endosphere microorganisms. In addition, the interactions between rhizosphere microorganisms and metabolites in the farmland group were weakened compared with those in the underplanted groups. Canonical correspondence analysis (CCA) showed that Aspergillus and Ellin6067 had the greatest influence on the metabolites. Myrmecridium, as a shared microbe in the rhizosphere and endosphere, had interaction effects with the largest number of microbes. Conclusion: This study revealed the interactions between the microbes and metabolites in P. sibiricum and systematically explored the mechanism underlying their correlation, which was mediated by the understory interplanting mode. This study provides feasible strategies for improving the medicinal value of P. sibiricum by regulating microorganisms.

2.
BMC Plant Biol ; 22(1): 163, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365083

RESUMO

BACKGROUND: The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS: During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION: We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.


Assuntos
Polygonatum , Regulação da Expressão Gênica de Plantas , Humanos , Dormência de Plantas/genética , Proteínas de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Rizoma/metabolismo , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA