Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572687

RESUMO

AMP-activated protein kinase (AMPK) plays a crucial role in the regulation of energy homeostasis in both peripheral metabolic organs and the central nervous system. Recent studies indicated that p-Coumaric acid (CA), a hydroxycinnamic phenolic acid, potentially activated the peripheral AMPK pathway to exert beneficial effects on glucose metabolism in vitro. However, CA's actions on central AMPK activity and whole-body glucose homeostasis have not yet been investigated. Here, we reported that CA exhibited different effects on peripheral and central AMPK activation both in vitro and in vivo. Specifically, while CA treatment promoted hepatic AMPK activation, it showed an inhibitory effect on hypothalamic AMPK activity possibly by activating the S6 kinase. Furthermore, CA treatment enhanced hypothalamic leptin sensitivity, resulting in increased proopiomelanocortin (POMC) expression, decreased agouti-related peptide (AgRP) expression, and reduced daily food intake. Overall, CA treatment improved blood glucose control, glucose tolerance, and insulin sensitivity. Together, these results suggested that CA treatment enhanced hypothalamic leptin signaling and whole-body glucose homeostasis, possibly via its differential effects on AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Leptina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Resistência à Insulina , Camundongos , Pró-Opiomelanocortina/metabolismo
2.
Molecules ; 25(13)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645855

RESUMO

Panax vietnamensis (PV), a wild Panax species discovered in Vietnam in 1973, has been increasingly overexploited due to its economic value and therapeutic uses. This resulted in the development of PV cultivation to meet the market demand. There is little information on the accumulation of saponins in PV during cultivation, but this information could serve as an indication of the appropriate harvest time. In this study we developed an HPLC-UV/ELSD method to simultaneously determine the content of 10 characteristic saponins in PV from 2-7 years old, including G-Rb1, G-Rd, G-Rg1, G-Re, N-R1, M-R1, M-R2, V-R2, V-R11, and p-RT4. The result indicated that from 2 to 5 years, the content of saponins in PV rhizome and radix increase 3.02 and 4.2 times, respectively, whereas from 5 to 7 years, no significant changes were observed. Hence, our study suggests that after 5 years of growth could be considered as an appropriate time for PV to be harvested. Among the analyzed saponins, G-Rg1, G-Rb1, G-Rd, and especially M-R2 were the major saponins that contributed to the change of PV's saponin content through the years. In addition, the developed and validated HPLC method was proven to be reliable and effective for quality control of PV.


Assuntos
Panax/metabolismo , Raízes de Plantas/metabolismo , Rizoma/metabolismo , Saponinas/metabolismo , Cromatografia Líquida de Alta Pressão , Saponinas/análise
3.
J Nat Prod ; 83(2): 223-230, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32031796

RESUMO

Cimicifuga dahurica has traditionally been used as an antipyretic, analgesic, and anti-inflammatory agent and as a treatment for uterine and anal prolapse. This study has investigated the potential beneficial effects of this medicinal plant and its components on Alzheimer's disease (AD) with a focus on amyloid beta (Aß) production and scopolamine-induced memory impairment in mice. An ethanol extract from C. dahurica roots decreased Aß production in APP-CHO cells [Chinese hamster ovarian (CHO) cells stably expressing amyloid precursor protein (APP)], as determined by an enzyme-linked immunosorbent assay and Western blot analysis. Then, the compounds isolated from C. dahurica were tested for their antiamyloidogenic activities. Four compounds (1-4) efficiently interrupted Aß generation by suppressing the level of ß-secretase in APP-CHO cells. Moreover, the in vivo experimental results demonstrated that compound 4 improved the cognitive performances of mice with scopolamine-induced disruption on behavioral tests and the expression of memory-related proteins. Taken together, these results suggest that C. dahurica and its constituents are potential agents for preventing or alleviating the symptoms of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/farmacologia , Plantas Medicinais/química , Escopolamina/farmacologia , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/farmacologia , Peptídeos beta-Amiloides/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células CHO , Cimicifuga , Cricetinae , Cricetulus , Camundongos , Estrutura Molecular , Plantas Medicinais/metabolismo , Escopolamina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA