Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(3): 753-763, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35178959

RESUMO

Previously, Carthami Flos and Lepidii Semen(CF-LS) drug pair has been proved effective in inhibiting myocardial fibrosis(MF) by blunting the activity of cardiac fibroblasts. The present study explored the underlying mechanism of CF-LS in inhibiting MF by improving the cardiac microenvironment based on network pharmacology combined with experimental verification. Active compounds and potential targets of CF-LS were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and the potential targets of MF were obtained from GeneCards, Online Mendelian Inheritance in Man(OMIM), and Pharmacogenetics and Pharmacogenomics Knowledge Base(PharmGKB). The "active component-target-MF" network was constructed and analyzed by Cytoscape 3.8.1. The protein-protein interaction(PPI) network was constructed by STRING. The Gene Ontology(GO) biological process enrichment analysis was performed by CluoGO plug-in. Kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway enrichment analysis was performed by R 4.0.2 and Funrich. Subsequently, the inhibitory effect of CF-LS on MF was investigated based on angiotensin Ⅱ(Ang Ⅱ)-induced MF rats. RT-PCR and ELISA were used to verify the effect of CF-LS on the targets of signaling pathways related to vascular endothelial cells predicted by the network pharmacology. Thirty-one active components and 204 potential targets of CF-LS, 4 671 MF-related targets, and 174 common targets were obtained. The network analysis showed that the key targets of CF-LS against MF included RAC-alpha serine/threonine-protein kinase(AKT1), transcription factor AP-1(JUN), mitogen-activated protein kinase 1(MAPK1), cellular tumor antigen p53(TP53), transcription factor p65(RELA), and mitogen-activated protein kinase 8(MAPK8). Biological processes mainly involved regulation of blood vessel diameter, regulation of blood vessel endothelial cell migration, cell death in response to oxidative stress, etc. Advanced glycation end products(AGE)-receptor for advanced glycation end products(RAGE) signaling pathway, phosphoinositide 3-kinase(PI3 K)-serine/threonine protein kinase(AKT) signaling pathway, hypoxia-inducible factor-1(HIF-1) signaling pathway, integrin signaling pathway, transforming growth factor-ß(TGF-ß) signaling pathway, etc. were involved in signaling pathway enrichment. Literature retrieval confirmed that some of these signaling pathways were closely related to vascular endothelial cells, including AGE-RAGE, PI3 K-AKT, HIF-1α, p53, the transcription factor activator protein-1(AP-1), integrin, p38 MAPK, and TGF-ß. Animal experiments showed that CF-LS inhibited MF induced by Ang Ⅱ in rats by suppressing the expression of RAGE, HIF-1α, integrin ß6, and TGF-ß1. The inhibitory effect of CF-LS on MF has the characteristics of multiple components, multiple targets, and multiple pathways. CF-LS can inhibit MF by regulating the activity of vascular endothelial cells in the cardiac microenvironment.


Assuntos
Experimentação Animal , Medicamentos de Ervas Chinesas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais , Fibrose , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Ratos , Sêmen
2.
Chin J Integr Med ; 26(3): 188-196, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31111424

RESUMO

OBJECTIVE: To observe the imbalance of anatomical and functional innervation factors of sympathetic nerves, nerve growth factor (NGF) and leukemia inhibitory factor (LIF), in salt-sensitive hypertensive heart failure rats and to explore the effects of treatment with Guizhi Decoction () on sympathetic remodeling by inhibiting cholinergic transdifferentiation. METHODS: SS-13BN and Dahl salt-sensitive (DS) rats were divided into 3 groups: SS-13BN group (control group, n=9), DS group (model group, n=9) and GS group (Guizhi Decoction, n=9). After 10 weeks of a high-salt diet, the GS group rats were given Guizhi Decoction and other two groups were given saline at an equal volume as a vehicle. After 4 weeks' intragastric administration, rats were executed to detect the relevant indicators. Echocardiography and plasma n-terminal pro-B type natriuretic peptide (NT-proBNP) levels were used to assess cardiac function. Noradrenaline (NA) levels in the plasma and myocardium were detected to evaluate the sympathetic function. NGF and LIF expression were detected in the myocardium by Western blot or quantitative real-time PCR. Double immunofluorescence or Western blot was used to detect tyrosine hydroxylase (TH), choline acetyltransferase (CHAT) and growth associated protein 43 (GAP43) in order to reflect anatomical and functional changes of sympathetic nerves. RESULTS: DS group had anatomical and functional deterioration of sympathetic nerves in the decompensation period of heart failure compared with SS-13BN group. Compared with the DS group, Guizhi Decoction significantly decreased the expression of LIF mRNA/protein (P<0.01), increased the expression of NGF (P<0.05 or P<0.01), enhanced the levels of TH+/GAP43+ and TH+/CHAT+ positive nerve fibers (P<0.01), and improved the protein expression of TH and GAP43 in left ventricle, but had no effect on CHAT (P>0.05). Guizhi Decoction inhibited inflammatory infiltration and collagen deposition of myocardial injury, increased the content of myocardial NA (P<0.05), reduced the plasma NA level (P<0.01), improved cardiac function (P<0.01), and improved weight and blood pressure to some extent (P<0.05), compared with DS group. CONCLUSIONS: Guizhi Decoction could inhibit cholinergic transdifferentiation of sympathetic nerves, improve the anatomical and functional denervation of sympathetic nerves, and delay the progression of decompensated heart failure. The mechanism may be associated with the correction of the imbalance of NGF and LIF.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Fator Inibidor de Leucemia/metabolismo , Fator de Crescimento Neural/metabolismo , Animais , Coração/efeitos dos fármacos , Ratos , Ratos Endogâmicos Dahl
3.
Biomed Res Int ; 2019: 9637479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396536

RESUMO

BACKGROUND: Changes in the gut microbiota are associated with cardiovascular disease progression. Xiao-Qing-Long Tang (XQLT), a traditional herbal formula, has an anti-inflammatory effect and regulates the steady state of the immune system, which is also associated with the progression of heart failure with preserved ejection faction (HFpEF). In this study, we investigated whether XQLT could contribute to prevent the development of HFpEF and whether the modulation of the gut microbiota by this herbal formula could be involved in such effect. METHODS: The gut microbiota, SCFAs, the histology/function of the heart, and systolic blood pressure were examined to evaluate the effect of XQLT on the gut microbiota and the progression of HFpEF after oral administration of XQLT to model rats. Furthermore, we evaluated, through fecal microbiota transplantation experiments, whether the favorable effects of XQLT could be mediated by the gut microbiota. RESULTS: Oral administration of XQLT contributed to the reduction of elevated blood pressure, inflammation, and compensatory hypertrophy, features that are associated with the progression of HFpEF. The gut microbiota composition, SCFA levels, and intestinal mucosal histology were improved after treatment with XQLT. Moreover, fecal transfer from XQLT-treated rats was sufficient to prevent the progression of HFpEF. CONCLUSIONS: These data suggested that XQLT prevented the development of HFpEF in model rats by regulating the composition of the gut microbiota.


Assuntos
Cardiomegalia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Insuficiência Cardíaca , Miócitos Cardíacos/metabolismo , Volume Sistólico/efeitos dos fármacos , Administração Oral , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/microbiologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/microbiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos Dahl
4.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(5): 608-13, 2016 May.
Artigo em Chinês | MEDLINE | ID: mdl-27386656

RESUMO

OBJECTIVE: To observe the preventive effect of different compatibilities of Ramulus Cinnamomi (RC) and Radix Paeomiae alba (RPA) in Guizhi Decoction (GZD) on neurotransmitters and their rate-limiting enzymes, and neurotrophic factors of cardiac sympathetic denervation model rats induced by 6-hydroxydopamine (6-OHDA). METHODS: Totally 54 male Wistar rats were randomly divided into 6 groups, i.e., the blank control group, the model group, the methycobal group, the 2:1 (RC/RPA) Guishao group, the 1:2 Guishao group, and the 1:1 Guishao group, 9 in each group. Sympathetic denervation was induced by intraperitoneal injection of 6-OHDA for three successive days. Rats in the methycobal group and GZD groups were administered with corresponding decoction by gastrogavage 1 week before modeling (methycobal at the daily dose 0.15 mg/kg; GZD at the daily dose of 4.0, 5.5, 5.5 g crude drugs/kg for GZD 1:1, 1:2, and 2:1 groups). All medication lasted for 10 successive days. Levels of norepinephrine (NE), tyrosine hydroxylase (TH), choline acetyl-transferase (ChAT), nerve growth factor (NGF), growth associated protein43 (GAP-43) and ciliary neurotrophic factor (CNTF) in myocar- dial homogenates of right atrium and ventricular septum were detected by ELISA. RESULTS: Compared with the blank control group, levels of NE, TH, TH/ChAT ratio, and GAP-43 in myocardial homogenates of right atrium and ventricular septum decreased in the model group, and level of NGF increased (P < 0.01, P < 0.05). Compared with the model group, levels of NE and GAP-43 increased in the right atrium and interventricular septum; NGF level of the ventricular septum decreased in the methycobal group and each GZD groups. TH and TH/ChAT ratio in the right atrium increased in the 2:1 Guishao group and the 1:2 Guishao group (P < 0.01, P < 0.05); NGF levels in the right atrium and interventricular septum decreased only in the 1:1 Guishao group (P < 0.01, P< 0.05). Compared with the methycobal group, levels of NE, TH, and GAP-43 in the right atrium and interventricular septum increased, and NGF levels in the right atrium and interventricular septum decreased in the 1:1 Guishao group (P < 0.05). Compared with the methycobal group, levels of NE and GAP-43 in interventricular septum increased in the 2:1 Guishao group (P < 0.05). CONCLUSION: GZD (with the proportion between RC and RPA 2:1 and 1:1) could improve contents of neurotransmitters and their rate-limiting enzymes, as well as neurotrophic factors in cardiac sympathetic denervation model rats induced by 6-OHDA, alleviate cardiac sympathetic denervation induced by 6-OHDA, and maintain the balance of sympathetic-vagal nerve system.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Coração/efeitos dos fármacos , Oxidopamina/efeitos adversos , Simpatectomia , Animais , Colina O-Acetiltransferase/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Proteína GAP-43/metabolismo , Coração/inervação , Masculino , Miocárdio/metabolismo , Fator de Crescimento Neural/metabolismo , Norepinefrina/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
5.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 35(6): 741-5, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26242130

RESUMO

OBJECTIVE: To observe the preventive effect different compatibilities of Ramulus Cinnamomi (RC) and peony in Guizhi Decoction (GD) on diabetic cardiac autonomic neuropathy (DCAN). METHODS: Totally 60 male rats were randomly divided into 5 groups, i.e., the blank control DM group, the model group, the methycobal group, the 1:1 (RC/peony) Guishao group, the 2:1 Guishao group, and the 1:2 Guishao group, 10 in each group. Rats were pretreated with corresponding drugs for 1 week, and then induced diabetes by intraperitoneal injection of STZ. Drugs were administrated by gastrogavage for 4 more weeks after STZ-injection. Enzyme-linked immunosorbent assay (ELISA) was employed to detect levels of tyrosine hydroxylase (TH), choline acetyltransferase (CHAT), nerve growth factor. (NGF), and ciliary neurotrophic factor (CNTF) in myocardial homogenates. RESULTS: After 4-week modeling, body weight (BW) was obviously lower, but blood glucose (BG) was higher in STZ rats than in rats of the blank control DM group. There was no statistical difference in BW or BG among the 5 groups (P >0.05). Compared with the blank control group, TH, TH/CHAT, and NGF in left ventricle and ventricular septum increased, CHAT and CNTF increased in the model group (P < 0.05, P < 0.01). Compared with the model group, TH and TH/CHAT in left ventricle decreased (P < 0.05, P < 0.01), CNTF in left ventricle increased (P < 0.05), CHAT in left ventricle and ventricular septum increased (P < 0.05, P < 0.01) in the methycobal group. TH and TH/CHAT in left ventricle and ventricular septum decreased, CNTF in left ventricle and ventricular septum increased (P < 0.05, P < 0.01), CHAT in left ventricle and ventricular septum increased (P < 0.01), NGF in ventricular septum decreased (P < 0.01) in the 1:1 Guishao group. TH/CHAT in left ventricle decreased (P < 0.01), CHAT and CNTF in left ventricle and ventricular septum increased (P < 0.05, P < 0.01) in the 1:2 Guishao group. Compared with the methycobal group, CHAT in left ventricle decreased, TH and TH/CHAT in left ventricle increased in the 2:1 Guishao group (P < 0.05, P < 0.01). TH and TH/CHAT in ventricular septum decreased (P < 0.05), CHAT and CNTF in left ventricle and ventricular septum increased (P < 0.05, P < 0.01) in the 1:1 Guishao group. Compared with the 1:2 Guishao group and the 2:1 Guishao group, CHAT in left ventricle increased, TH/CHAT in left ventricle decreased, TH and TH/CHAT in ventricular septum decreased, CHAT in ventricular septum increased, CNTF in left ventricle and ventricular septum also increased in the 1:1 Guishao group (all P < 0.01). CONCLUSIONS: STZ model rats had autonomic neural injury, manifested as lowered vagal nerve activity and hyperactive sympathetic nerves. GD could effectively suppress hyperactive cardiac sympathetic nerves and protect the vagus. Besides, GD (1:1) showed the optimal effect in regulating the balance of cardiac autonomic nerves and could be used in early prevention of DCAN.


Assuntos
Neuropatias Diabéticas/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Paeonia , Animais , Glicemia , Colina O-Acetiltransferase , Coração , Ventrículos do Coração , Masculino , Miocárdio , Fator de Crescimento Neural , Ratos , Tirosina 3-Mono-Oxigenase
6.
Chin J Integr Med ; 20(7): 524-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24972580

RESUMO

OBJECTIVE: To observe abnormalities in heart rate variability (HRV) in diabetic rats and to explore the effects of treatment with Guizhi Decoction ([symbols; see text]) on cardiac autonomic nervous (CAN) imbalance. METHODS: A radio-telemetry system for monitoring physiological parameters was implanted into rats to record electrocardiac signals and all indictors of HRV [time domain measures: standard deviation of all RR intervals in 24 h (SDNN), root mean square of successive differences (RMSSD), percentage of differences between adjacent RR intervals greater than 50 ms (PNN50), and standard deviation of the averages of RR intervals (SDANN); frequency domain measures: low frequency (LF), high frequency (HF), total power (TP), and LF/HF ratio]. The normal group was randomly selected, and the remaining rats were used to establish streptozocin (STZ)-induced diabetic model. After 4 weeks, the model rats were divided into the model group, the methycobal group, and the Guizhi Decoction group, 9 rats in each group. Four weeks after intragastric administration of the corresponding drugs, the right atria of the rats were collected for immunohistochemical staining of tyrosine hydroxylase (TH) and choline acetyltransferase (CHAT) to observe the distribution of the sympathetic and vagus nerves in the right atrium. The myocardial homogenate from the interventricular septum and the left ventricle was used for determination of TH, CHAT, growth-associated protein 43 (GAP-43), nerve growth factor (NGF), and ciliary neurotrophic factor (CNTF) levels using an enzyme-linked immunosorbent assay. RESULTS: (1) STZ rats had elevated blood glucose levels, reduced body weight, and decreased heart rate; there was no difference between the model group and the drug treated groups. (2) Compared with the model group, only RMSSD and TP increased in the methycobal group significantly (P<0.05); SDNN, RMSSD, PNN50, LF, HF, and TP increased, LF/HF decreased (P<0.05), and SDANN just showed a decreasing trend in the Guizhi Decoction group (P>0.05). TH increased, CHAT decreased, and TH/CHAT increased in the myocardial homogenate of the model group (P<0.05). Compared with the model group, left ventricular TH reduced in the methycobal group; and in the Guizhi Decoction group CHAT increased, while TH and TH/CHAT decreased (P<0.05). Compared with the model group, CNTF in the interventricular septum increased in the methycobal group (P<0.05); GAP-43 increased, NGF decreased, and CNTF increased (P<0.05) in the Guizhi Decoction group. There were significant differences in the reduction of NGF and elevation of CNTF between the Guizhi Decoction group and the methycobal group (P<0.05). (3) Immunohistochemical results showed that TH expression significantly increased and CHAT expression significantly decreased in the myocardia of the model group, whereas TH expression decreased and CHAT expression increased in the Guizhi Decoction group (P<0.05). CONCLUSION: Guizhi Decoction was effective in improving the function of the vagus nerve, and it could alleviate autonomic nerve damage.


Assuntos
Sistema Nervoso Autônomo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Coração/inervação , Nervo Vago/efeitos dos fármacos , Animais , Sistema Nervoso Autônomo/fisiopatologia , Colina O-Acetiltransferase/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Coração/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Monitorização Fisiológica/métodos , Ratos Wistar , Telemetria/métodos , Resultado do Tratamento , Tirosina 3-Mono-Oxigenase/metabolismo , Nervo Vago/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA