Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958121

RESUMO

Our previous study showed that early supplementation with 10 g/(d·head) of galacto-oligosaccharides (GOS) in newborn Holstein dairy calves reduced the incidence of diarrhea and improved growth performance and mineral absorption. Since the dose of 10 g/(d·head) was the lowest by dose screening in our previous study, the present study was designed to investigate whether a lower amount of GOS has similar effects on growth performance, immune function, serum nutrients in newborn Holstein heifer calves, and to further investigate its effect on appetite-related hormones. Twenty-eight healthy newborn (1 day of age) Holstein heifers with similar average body weight (41.18 ± 1.90 kg) were randomly divided into four groups (n = 7): the control group (CON group), which received heated raw milk, and three experimental groups, which received heated raw milk supplemented with 2.5 (GOS2.5 group), 5 (GOS5 group), and 10 g/(d·head) (GOS10 group) GOS. All heifer calves were fed the same starter for 28 d. Supplementation with GOS linearly increased the final body weight, average daily gain, and feed efficiency in heifer calves (p < 0.01). Compared with the control group, the average daily gain and feed efficiency of heifer calves were significantly higher in the GOS5 and GOS10 groups than in the control group (p < 0.05). Furthermore, supplementation with GOS quadratically enhanced the starter and total average daily feed intake of the heifers (p < 0.01), especially in the GOS2.5 and GOS5 groups, (p < 0.05 vs. CON). The serum concentration of immunoglobulin A was linearly increased by GOS supplementation (p < 0.05), and the levels in the GOS5 and GOS10 groups were significantly higher than those in the CON group. Meanwhile, GOS linearly decreased serum interleukin-1ß and interleukin-6 concentrations (p < 0.05). The serum concentration of triglycerides was also linearly decreased (p < 0.05), whereas total protein and blood urea nitrogen were linearly increased (p < 0.05). Supplementation with GOS linearly decreased the serum concentration of leptin (p < 0.05) but increased cholecystokinin and glucagon-like peptide-1 (p < 0.05). Increasing doses of GOS linearly improved serum calcium and copper concentrations (p < 0.01) and quadratically enhanced the concentration of magnesium, which peaked in the GOS5 group (p < 0.05). In conclusion, GOS supplementation reduced the incidence of diarrhea and improved the growth performance and immune function of Holstein heifer calves.

2.
Front Vet Sci ; 10: 1236635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829355

RESUMO

The present study evaluated the effects of early supplementation with zinc proteinate (ZnP) or zinc oxide (ZnO) for 2 weeks on the growth performance, redox status, plasma trace element concentrations, and rectal microbiota of preweaned dairy calves. A total of 60 newborn healthy female Holstein dairy calves, with initial body weight (BW): 41.33 ± 0.62 kg, were randomly allocated to 5 groups of 12 each: a control group (CON); three groups supplemented with 261 (L-ZnP), 523 (M-ZnP), and 784 (H-ZnP) mg/day ZnP, equivalent to 40, 80, and 120 mg/day zinc, respectively; and one group supplemented with 232 mg/day ZnO, equivalent to 180 mg/day zinc (ZnO). Zinc supplements were administered on days 1-14, and the calves were followed up until day 70. Zinc supplementation increased total dry matter intake (DMI) and starter DMI compared with the CON group (p < 0.01). The final BW, average daily gain, and feed efficiency were higher in the M-ZnP, H-ZnP, and ZnO groups (p < 0.05). The incidence of diarrhea on days 1-28 was reduced by zinc administration (p < 0.01), whereas the incidence on days 29-56 was lower in the M-ZnP and ZnO groups (p < 0.05). Serum glutathione peroxidase activity, total antioxidant capacity, immunoglobulin G and plasma zinc concentrations were increased linearly (p < 0.05), while the serum concentration of malondialdehyde was decreased linearly (p < 0.01), as the dose of ZnP increased. ZnP yielding 80 mg/day zinc had similar effects as ZnO yielding 180 mg/day zinc, except that final BW was higher in the ZnO group (p < 0.05). At the phylum level, ZnO decreased the relative abundance of Firmicutes while increasing the abundance of Bacteroidetes (p < 0.05). At the genus level, ZnO increased the relative abundances of Prevotella, Subdoligranulum, and Odoribacter (p < 0.05). These findings indicated that early supplementation with ZnP did not affect the rectal microbiota of preweaned dairy calves but increased their growth performance, antioxidant capacity, and plasma zinc concentration. In summary, ZnP is an organic zinc source with greater bioavailability than ZnO for preweaned dairy calves. Early dietary supplementation with ZnP yielding 80 mg/day zinc is recommended.

3.
Animals (Basel) ; 13(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570301

RESUMO

The current study examined the effects of supplementary zinc proteinate (ZnPro) and zinc oxide (ZnO) on growth performance, diarrhea, antioxidant capacity, immune function, and mineral element concentrations of calves aged 1 to 28 days. A total of twenty-four newborn calves were divided randomly into 3 groups (n = 8; 2 males and 6 females per group), and each received: 0 mg/d Zn (CON), 627 mg/d ZnPro (80 mg/d Zn; ZnPro group), and 101 mg/d ZnO (80 mg/d Zn; ZnO group). The calves received the additive in their milk during the first 28 days of life. Compared with the CON group: ZnPro and ZnO improved average daily gain (ADG) and decreased the feed:gain ratio (FGR) between days 1 and 14 (p < 0.05), while the ADG increased and FGR decreased only in the ZnPro group between days 1 and 28 (p < 0.05). The incidence of diarrhea decreased (p < 0.05) in the ZnPro and ZnO groups between days 15 and 28 as well as days 1 and 28, but decreased (p < 0.05) only in the ZnPro group between days 1 and 14. The serum immunoglobulin G (IgG) concentration of the ZnPro and ZnO groups increased on days 14 and 28 (p < 0.05). ZnPro supplementation increased serum IgM concentration during the whole study, while ZnO enhanced serum IgM concentration only on day 14 (p < 0.05). In the ZnO group, the serum concentration of cytokines interleukin (IL)-10 increased on day 14, while that of IL-1ß increased on day 28 (p < 0.05). In addition, ZnPro reduced the serum malondialdehyde (MDA) concentration on days 14 and 28 (p < 0.05). Both ZnPro and ZnO increased the serum concentrations of alkaline phosphatase (ALP) and metallothionein (MT) on day 14 (p < 0.05). With zinc supplementation, plasma Zn concentration increased (p < 0.05) on days 14 and 28 of age. We concluded that supplementary ZnPro and ZnO reduced incidences of diarrhea and promoted the immune function, but ZnPro improved the growth performance and antioxidant capacity of Holstein dairy calves to a greater extent.

4.
Anim Nutr ; 13: 401-410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214216

RESUMO

Chromium yeast (CY) supplementation has the potential to alleviate the negative effects of heat stress in dairy cows, but the mechanism remains elusive. We aimed to identify the metabolic mechanisms whereby CY supplementation alleviates the negative effects of heat stress in mid-lactation dairy cows. Twelve Holstein dairy cows with similar milk yield (24.6 ± 1.5 kg/d), parity (2 or 3) and days in milk (125 ± 8 d) were fed the same basal diet containing 0.09 mg of Cr/kg DM. They were allocated randomly to 2 groups: a control group (CON, without CY supplementation) and a CY group (CY, administered 0.36 mg Cr/kg DM). The experiment was performed over 8 weeks during a hot summer, in which the mean temperature-humidity index was 79.0 ± 3.13 (>72), indicating that the dairy cows were exposed to heat stress. Chromium yeast supplementation reduced rectal temperature (P = 0.032), and increased the lactation performance by increasing the yield of milk (+2.6 kg/d), protein, lactose and total solid, and protein and lactose percentages in the milk of the heat-stressed dairy cows (P < 0.05). Supplementation with CY increased the serum glucose and thyroxine concentrations, but reduced the urea nitrogen, insulin, and triiodothyronine concentrations on d 56 (P < 0.05). Furthermore, plasma metabolomic analysis was performed using liquid chromatography tandem-mass spectrometry, which identified 385 metabolites in the two groups. Subsequently, 16 significantly different metabolites in the plasma, were significantly higher in the CY group (variable importance for the projection >1.0, P < 0.05), and found to be involved in 6 Kyoto Encyclopedia of Genes and Genomes pathways, including those involved in nicotinate and nicotinamide metabolism. Specifically, plasma concentration of nicotinamide was higher after CY supplementation, which might also contribute to the reduction of rectal temperature, the regulation of glucose homeostasis, and an improvement in the lactation performance of heat-stressed dairy cows. In conclusion, CY supplementation reduces rectal temperature, influences metabolism by reducing serum insulin concentration and increasing serum glucose and plasma nicotinamide concentrations, and finally increases lactation performance of heat-stressed dairy cows.

5.
Front Vet Sci ; 9: 911330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847636

RESUMO

Two experiments were conducted to identify the optimal dose of zinc proteinate (ZP) in the diet for dairy calves and then to compare early supplementation with the ZP or zinc methionine (ZM) on the growth performance, incidence of diarrhea, antioxidant status, and immune function of dairy calves during their first month of life. In Experiment 1, forty newborn female Holstein dairy calves were randomly divided into four groups (n = 10): a control group (without ZP supplementation, ZP0) or groups that received ZP supplementation at 40, 80, and 120 mg zinc/day, respectively (ZP40, ZP80, and ZP120). The experiment lasted 14 days, and the growth performance, incidence of diarrhea, and serum zinc concentration were analyzed. In Experiment 2, thirty-six newborn female Holstein dairy calves were randomly allocated to three groups (n = 12): a negative control group (without zinc supplementation, CON), a positive control group (supplemented with 80 mg zinc/day in the form of zinc methionine, ZM), and a ZP group (supplemented with 80 mg zinc/day in the form of ZP). The experiment lasted 28 days, and the growth performance, incidence of diarrhea, serum zinc concentration, serum antioxidant indicators, and concentrations of plasma immunoglobulins and cytokines were determined on days 7, 14, 21, and 28. Results showed that in Experiment 1, supplementation with ZP to yield 80 mg zinc/day increased the ADG (P < 0.01) and serum zinc concentration (P < 0.01), and decreased the F/G (P < 0.01) and the incidence of diarrhea (P < 0.05) during days 1-14. In Experiment 2, compared with the CON group, ZP increased the ADG (P < 0.01), serum zinc concentration (P < 0.01), and plasma immunoglobulin G (IgG; P < 0.01) and IgM (P < 0.01) concentrations, but reduced the incidence of diarrhea (P < 0.01), serum malondialdehyde (P < 0.01), and plasma interleukin-1ß (P < 0.01) concentrations during days 1-28. Overall, ZP supplementation to yield 80 mg zinc/day improves the growth performance and immune function, and decrease the incidence of diarrhea of dairy calves, which was comparable to the same dose of zinc in the form of ZM.

6.
Animals (Basel) ; 10(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707966

RESUMO

Zinc is considered to be an anti-diarrheal agent, and it may therefore reduce the incidence of diarrhea in young calves. In the present study, we aimed to compare the effect of zinc source on growth performance, the incidence of diarrhea, tissue zinc accumulation, the expression of zinc transporters, and the serum concentrations of zinc-dependent proteins in neonatal Holstein dairy calves. Eighteen male newborn Holstein dairy calves were fed milk and starter diet supplemented with or without 80 mg zinc/d in the form of Zn-Met or ZnO for 14 days, and were then euthanized. Zn-Met supplementation improved average daily gain and feed efficiency, and reduced the incidence of diarrhea, compared with control calves (p < 0.05). It also increased the serum and hepatic zinc concentrations and the mRNA expression of the ZIP4 transporter in the jejunal mucosa of the calves (p < 0.05). In addition, the serum alkaline phosphatase activity and metallothionein concentration were higher in Zn-Met-treated calves than in control calves (p < 0.05). ZnO supplementation had similar effects, but these did not reach significance. Thus, Zn-Met supplementation is an effective means of increasing tissue zinc accumulation and jejunal zinc absorption, and can be used as an anti-diarrheal strategy in neonatal calves.

7.
Curr Protein Pept Sci ; 21(8): 744-750, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32392109

RESUMO

In-depth studies have identified many hormones important for controlling mammary growth and maintaining lactation. One of these is melatonin, which is synthesized and secreted by the pineal gland to regulate circadian rhythms, improve antioxidant capacity, and enhance immunity. Prolactin is secreted by the pituitary gland and is associated with the growth and development of mammary glands as well as initiation and maintenance of lactation. The hypothalamus-pituitary system, the most important endocrine system in the body, regulates prolactin secretion mainly through dopamine released from tuberoinfundibular dopaminergic neurons. This review provides a reference for further study and describes the regulation of lactation and prolactin secretion by melatonin, primarily via the protection and stimulation of tuberoinfundibular dopaminergic neurons.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Lactação/efeitos dos fármacos , Melatonina/metabolismo , Hipófise/efeitos dos fármacos , Prolactina/biossíntese , Animais , Ritmo Circadiano/fisiologia , Neurônios Dopaminérgicos/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/fisiologia , Melatonina/farmacologia , Glândula Pineal/metabolismo , Hipófise/metabolismo
8.
Curr Protein Pept Sci ; 20(2): 139-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29756573

RESUMO

Lactoferrin (lactotransferrin; Lf) is an iron-binding glycoprotein and one of the most important bioactivators in milk and other external secretions. It has numerous biological roles, including the regulation of iron absorption and modulation of immune responses, and has anti-microbial, anti-viral, antioxidant, anti-cancer, and anti-inflammatory activities. Lf regulates the quantity of iron absorbed in the intestine via its role in iron transport and can also chelate iron, directly or indirectly. Notably, it has been used as an adjuvant therapy for some intestinal diseases. It is now used in nutraceuticalsupplemented infant formula and other food products. This article reviews the content, distribution, physiologic functions and current applications of Lf, and aims to shed light on future prospects for additional applications of Lf.


Assuntos
Lactoferrina/fisiologia , Animais , Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Antivirais/metabolismo , Humanos , Absorção Intestinal , Ferro/metabolismo , Lactoferrina/farmacologia , Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA