Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Life (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676120

RESUMO

Codonopsis tangshen Oliv (C. tangshen) is a valuable traditional Chinese medicinal herb with tremendous health benefits. However, the growth and development of C. tangshen are seriously affected by high temperatures. Therefore, understanding the molecular responses of C. tangshen to high-temperature stress is imperative to improve its thermotolerance. Here, RNA-Seq analysis was performed to investigate the genome-wide transcriptional changes in C. tangshen in response to short-term heat stress. Heat stress significantly damages membrane stability and chlorophyll biosynthesis in C. tangshen, as evidenced by pronounced malonaldehyde (MDA), electrolyte leakage (EL), and reduced chlorophyll content. Transcriptome analysis showed that 2691 differentially expressed genes (DEGs) were identified, including 1809 upregulated and 882 downregulated. Functional annotations revealed that the DEGs were mainly related to heat shock proteins (HSPs), ROS-scavenging enzymes, calcium-dependent protein kinases (CDPK), HSP-HSP network, hormone signaling transduction pathway, and transcription factors such as bHLHs, bZIPs, MYBs, WRKYs, and NACs. These heat-responsive candidate genes and TFs could significantly regulate heat stress tolerance in C. tangshen. Overall, this study could provide new insights for understanding the underlying molecular mechanisms of thermotolerance in C. tangshen.

2.
Plant Biotechnol J ; 20(4): 660-675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34743386

RESUMO

Bermudagrass (Cynodon dactylon) is one of the most widely cultivated warm-season turfgrass species around the world. Cold stress has been a key environmental factor that adversely affects the growth, development, and geographical distribution of bermudagrass; however, the underlying mechanism of bermudagrass responsive to cold stress remains largely unexplored. Here, we identified a cold-induced WRKY transcription factor CdWRKY2 from bermudagrass and demonstrated its function in cold stress response. Overexpression of CdWRKY2 enhanced cold tolerance in transgenic Arabidopsis and bermudagrass hairy roots, while knocking down CdWRKY2 expression via virus-induced gene silencing increased cold susceptibility. RNA sequencing showed that overexpression of CdWRKY2 in Arabidopsis activated the expression of genes involved in sucrose synthesis and metabolism, including sucrose synthase 1 (AtSUS1) and sucrose phosphate synthase 2F (AtSPS2F). CdSPS1, the homology gene of AtSPS2F in bermudagrass, was subsequently proven to be the direct target of CdWRKY2 by yeast one-hybrid, electrophoretic mobility shift assay, and transient expression analysis. As expected, overexpression of CdSPS1 conferred cold tolerance in transgenic Arabidopsis plants, whereas silencing CdSPS1 expression enhanced cold sensitivity in bermudagrass. Besides, CdCBF1 whose expression was dramatically up-regulated in CdWRKY2-overexpressing bermudagrass hairy roots but down-regulated in CdWRKY2-silencing bermudagrass both under normal and cold stress conditions was confirmed as another target of CdWRKY2. Collectively, this study reveals that CdWRKY2 is a positive regulator in cold stress by targeting CdSPS1 and CdCBF1 promoters and activating their expression to coordinately mediate sucrose biosynthesis and CBF-signalling pathway, which provides valuable information for breeding cold-resistant bermudagrass through gene manipulation.


Assuntos
Arabidopsis , Cynodon , Arabidopsis/genética , Temperatura Baixa , Cynodon/genética , Cynodon/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Sacarose/metabolismo
3.
Ecotoxicol Environ Saf ; 202: 110877, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32574862

RESUMO

Heat stress has been a major environmental factor limiting the growth and development of Pinellia ternata which is an important Chinese traditional medicine. It has been reported that spermidine (SPD) and melatonin (MLT) play pivotal roles in modulating heat stress response (HSR). However, the roles of SPD and MLT in HSR of P. ternata, and the potential mechanism is still unknown. Here, exogenous SPD and MLT treatments alleviated heat-induced damages in P. ternata, which was supported by the increased chlorophyll content, OJIP curve, and relative water content, and the decreased malondialdehyde and electrolyte leakage. Then, RNA sequencing between CK (control) and Heat (1 h of heat treatment) was conducted to analyze how genes were in response to short-term heat stress in P. ternata. A total of 14,243 (7870 up- and 6373 down-regulated) unigenes were differentially expressed after 1 h of heat treatment. Bioinformatics analysis revealed heat-responsive genes mainly included heat shock proteins (HSPs), ribosomal proteins, ROS-scavenging enzymes, genes involved in calcium signaling, hormone signaling transduction, photosynthesis, pathogen resistance, and transcription factors such as heat stress transcription factors (HSFs), NACs, WRKYs, and bZIPs. Among them, PtABI5, PtNAC042, PtZIP17, PtSOD1, PtHSF30, PtHSFB2b, PtERF095, PtWRKY75, PtGST1, PtHSP23.2, PtHSP70, and PtLHC1 were significantly regulated by SPD or MLT treatment with same or different trends under heat stress condition, indicating that exogenous application of MLT and SPD might enhance heat tolerance in P. ternata through regulating these genes but may with different regulatory patterns. These findings contributed to the identification of potential genes involved in short-term HSR and the improved thermotolerance by MLT and SPD in P. ternata, which provided important clues for improving thermotolerance of P. ternata.


Assuntos
Melatonina/metabolismo , Pinellia/fisiologia , Espermidina/metabolismo , Termotolerância/genética , Clorofila/metabolismo , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Fotossíntese/efeitos dos fármacos , Pinellia/genética , Pinellia/metabolismo , Análise de Sequência de RNA , Termotolerância/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
4.
PLoS One ; 12(6): e0179027, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28594951

RESUMO

Seed oil content is an important agronomic trait in oilseed rape. However, the molecular mechanism of oil accumulation in rapeseeds is unclear so far. In this report, RNA sequencing technique (RNA-Seq) was performed to explore differentially expressed genes in siliques of two Brassica napus lines (HFA and LFA which contain high and low oil contents in seeds, respectively) at 15 and 25 days after pollination (DAP). The RNA-Seq results showed that 65746 and 66033 genes were detected in siliques of low oil content line at 15 and 25 DAP, and 65236 and 65211 genes were detected in siliques of high oil content line at 15 and 25 DAP, respectively. By comparative analysis, the differentially expressed genes (DEGs) were identified in siliques of these lines. The DEGs were involved in multiple pathways, including metabolic pathways, biosynthesis of secondary metabolic, photosynthesis, pyruvate metabolism, fatty metabolism, glycophospholipid metabolism, and DNA binding. Also, DEGs were related to photosynthesis, starch and sugar metabolism, pyruvate metabolism, and lipid metabolism at different developmental stage, resulting in the differential oil accumulation in seeds. Furthermore, RNA-Seq and qRT-PCR data revealed that some transcription factors positively regulate seed oil content. Thus, our data provide the valuable information for further exploring the molecular mechanism of lipid biosynthesis and oil accumulation in B. nupus.


Assuntos
Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma/genética , Brassica napus/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA