RESUMO
In this work, the differences in macrostructure and microstructure, rheology, and storage stability of pre-emulsified safflower oil (PSO) prepared by natural and magnetic field modified soy 11S globulin were analysised. It was concluded that the PSO with magnetic field modified soy 11S globulin (MPSO) has better emulsifying activity and physical stability. The changes in gel quality, oxidational sensitivity, rheological, and sensory properties of pork batters with different substitute ratios (0%, 25%, 50%, 75%, and 100%) of pork back-fat by MPSO with magnetic field modified soy 11S globulin were studied. Compared to the sample without MPSO, pork batter with MPSO showed higher emulsion stability, apparent viscosity, Lâ value, springiness, cohesiveness, and expressible moisture, while lower aâ value and cooking loss. Moreover, added MPSO could be more uniformly distributed into the meat matrix with smaller holes. With the increase in the replacement proportion of pork back-fat, the hardness, water- and fat-holding capacity, and P21 of pork batter significantly decreased (P < 0.05). As revealed by sensory evaluation and TBARS, using MPSO to substitute for pork back-fat decreased the lipid oxidational sensitivity of pork batter, and without negative effects on the appearance, juiciness and overall acceptability. Overall, it is feasible to apply MPSO as a pork-fat replacer to produce reduced-animal fat pork batter with excellent gel and sensory properties.
Assuntos
Substitutos da Gordura , Globulinas , Carne de Porco , Carne Vermelha , Animais , Suínos , Manipulação de Alimentos , Óleo de Cártamo , Substitutos da Gordura/química , Reologia , Campos MagnéticosRESUMO
Here, the effect of high-pressure conditions (0.1-400 MPa) on the water-loss, texture, gel strength, color, dynamic rheological property, and water migration of pork batters containing 0.1% (W/W) Artemisia sphaerocephala krasch gum (PB-AG) is studied. Results indicated that the cooking yield, water-holding capacity, texture, gel strength, L* values, and G' values increased with the increase in pressure (0.1-300 MPa) (p < 0.05). Dynamic rheological results (G') revealed that the thermal gelling ability of the PB-AG gel gradually increased with pressure (0.1-300 MPa). The minimum of T22 content was observed and the proportion of immobilized water decreased at 300 MPa by low-filed nuclear magnetic resonance. However, excessive high-pressure processing treatments (400 MPa) resulted in lower gel strength, WHC, texture, and G'. The scanning electron microscopy results shown that a denser network structure with small cavities was observed at 300 MPa. Therefore, moderate pressure treatment (≤300 MPa) may improve gelation properties of PB-AG gel, while excessive pressure treatment (400 MPa) may weaken the gelation properties. PRACTICAL APPLICATION: High-pressure processing combining Artemisia sphaerocephala krasch gum could enhance the gelation properties of pork batters. To do so, establishing knowledge on gelation properties of pork batters with Artemisia sphaerocephala krasch gum at different pressure levels treatment would be of paramount importance, because this contributes furnishing engineering data pertinent to the technical progress for the processing of emulsion-type meat with high quality.