Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 288(1): 63-73, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26210349

RESUMO

Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis.


Assuntos
Anti-Inflamatórios/farmacologia , Cério/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/farmacologia , Animais , Anti-Inflamatórios/química , Líquido da Lavagem Broncoalveolar/química , Cério/química , Colágeno/metabolismo , Citocinas/metabolismo , Citoproteção , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Nanopartículas Metálicas/química , Fosfolipídeos/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/prevenção & controle , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/prevenção & controle , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Ratos Sprague-Dawley , Dióxido de Silício/química , Espectrometria por Raios X , Propriedades de Superfície , Fatores de Tempo , Inibidores Teciduais de Metaloproteinases/metabolismo
2.
Mol Cell Biochem ; 234-235(1-2): 177-84, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12162431

RESUMO

Numerous investigations have been conducted to elucidate mechanisms involved in the initiation and progression of silicosis. However, most of these studies involved bolus exposure of rats to silica, i.e. intratracheal instillation or a short duration inhalation exposure to a high dose of silica. Therefore, the question of pulmonary overload has been an issue in these studies. The objective of the current investigation was to monitor the time course of pulmonary reactions of rats exposed by inhalation to a non-overload level of crystalline silica. To accomplish this, rats were exposed to 15 mg/m3 silica, 6 h/day, 5 days/week for up to 116 days of exposure. At various times (5-116 days exposure), animals were sacrificed and silica lung burden, lung damage, inflammation, NF-KB activation, reactive oxygen species and nitric oxide production, cytokine production, alveolar type II epithelial cell activity, and fibrosis were monitored. Activation of NF-KB/DNA binding in BAL cells was evident after 5 days of silica inhalation and increased linearly with continued exposure. Parameters of pulmonary damage, inflammation and alveolar type II epithelial cell activity rapidly increased to a significantly elevated but stable new level through the first 41 days of exposure and increased at a steep rate thereafter. Pulmonary fibrosis was measurable only after this explosive rise in lung damage and inflammation, as was the steep increase in TNF-alpha and IL-1 production from BAL cells and the dramatic rise in lavageable alveolar macrophages. Indicators of oxidant stress and pulmonary production of nitric oxide exhibited a time course which was similar to that for lung damage and inflammation with the steep rise correlating with initiation of pulmonary fibrosis. Staining for iNOS and nitrotyrosine was localized in granulomatous regions of the lung and bronchial associated lymphoid tissue. Therefore, these data demonstrate that the generation of oxidants and nitric oxide, in particular, is temporally and anatomically associated with the development of lung damage, inflammation, granulomas and fibrosis. This suggests an important role for nitric oxide in the initiation of silicosis.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/patologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Silicose/metabolismo , Silicose/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA