Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carbohydr Polym ; 300: 120244, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372506

RESUMO

A novel multi-layered reticular polyamidoxime (PAO)-functionalized holocellulose bundles (ML-r-PAO@HB) with abundant oriented micro-channels and high mechanical strength was created via a facile solvent-exchange strategy and used for the first time to capture uranium from seawater. Due to the hydrophobic interaction of PAO chains induced by the solvent-exchange, multi-layered reticular PAO was successfully self-assembled onto the oriented micro-channels of the HB, which greatly improved the accessibility to the adsorption sites by increasing the exposed surface of PAO. The ML-r-PAO@HB exhibited high uptake capacity (851.42 mg g-1 PAO) and excellent adsorptive selectivity for U(VI) ions. After exposure to 500-L natural seawater for 28 days, an ultra-high uranium extraction capacity (9.74 mg g-1 PAO) was achieved by ML-r-PAO@HB. The N and O atoms in the -C(NH2)N-OH group were the main coordination sites for U(VI) uptake. These wonderful performances render the ML-r-PAO@HB highly desirable for the large-scale uranium extraction from seawater.


Assuntos
Urânio , Urânio/química , Água do Mar/química , Adsorção , Solventes
2.
Bioresour Technol ; 360: 127621, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35842067

RESUMO

In fact, effectively removing lignin from pulp fibers facilitates the conversion and utilization of cellulose. In this study, the residual lignin in eucalyptus pulp was separated using a high concentration of chlorine dioxide. The effects of chlorine dioxide dosage, temperature, and time on lignin removal were investigated. The optimal conditions are chlorine dioxide dosage 5.0%, reaction temperature 40 °C, and reaction time 30 min. The lignin removal yield is 88.21%. The removal yields of cellulose and hemicellulose are 2.28 and 17.00%, respectively. The treated eucalyptus pulp has higher fiber crystallinity and thermal stability. The carbon content on the fiber surface is significantly reduced. The results show that lignin is removed by efficient oxidation, and the degradation of carbohydrates is inhibited using high concentrations of chlorine dioxide at low temperatures and short reaction times. This provides theoretical support for high value conversion of cellulose.


Assuntos
Compostos Clorados , Eucalyptus , Carboidratos , Celulose/metabolismo , Compostos Clorados/metabolismo , Compostos Clorados/farmacologia , Eucalyptus/metabolismo , Lignina/metabolismo , Óxidos
3.
Bioresour Technol ; 355: 127304, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562023

RESUMO

Aromatic and hydroxyl acid treatments demonstrate their respective characteristics for the separation of lignocellulosic biomass. In this study, the effect of salicylic acid (SA-A) treatment on the separation of eucalyptus components with both aromatic and hydroxyl acid properties was analyzed. The optimal conditions were SA-A concentration 9.0%, reaction temperature 140 °C and time 75 min. The separation yield of xylose was 85.93%. The separation of cellulose and lignin was inhibited by SA-A treatment in contrast to the separation by glycolic acid and p-toluenesulfonic acid treatment. Moreover, SA-A treatment resulted in a larger fiber crystallinity index and higher thermal stability. The SA-A-treated samples contained lignin that was rich in ß-O-4 and hydroxyl groups. The degradation and condensation of lignin was inhibited. The selectivity of aromatic acids for separating hemicellulose and protecting the lignin structure using hydroxy acids was demonstrated. Thus, new and efficient organic acid treatments can be developed.


Assuntos
Eucalyptus , Ácidos , Biomassa , Eucalyptus/química , Hidroxiácidos , Lignina/química , Polissacarídeos , Ácido Salicílico
4.
Int J Biol Macromol ; 174: 254-262, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33529632

RESUMO

Fabricating lignin-based carbon nanofibers (LCNFs) with the lignin in spent coffee grounds (SCG) as raw material which are disposed as waste amounting to millions tons annual is benefit to promote economy and environmental protection. However, due to the heterogeneity and complex three-dimensional structure, the mechanic property is very poor. In this study, we propose a fractionating pretreatment method to overcome the above problems by regulating the structure of SCG lignin in which high-performance LCNFs were fabricated. On one hand, the linear structure of SCG lignin was optimized to fit the raw material of LCNFs by tuning the content of ß-O-4 and C5-substituted condensed phenolic compounds. On the other hand, the carboxyl as the hydrophilic groups was removed so as to promote the mixing of lignin and polyacrylonitrile (PAN, blending agent) in organic solvents. Additionally, the heterogeneity was reduced by screening large molecular weight SCG lignin with low polydispersity index (PDI). Fortunately, with 1:1 mass ratio of the above fractionated lignin and PAN as substrate, the LCNFs could reach to comparable mechanic properties with those of pure PAN CNFs. This work can provide a new way to not only promote the utilization of SCG lignin but also accelerate the development of LCNFs.


Assuntos
Carbono/química , Café/química , Lignina/isolamento & purificação , Resinas Acrílicas/química , Fracionamento Químico , Resíduos Industriais/análise , Lignina/química , Nanofibras/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA