Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ovarian Res ; 16(1): 138, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37443082

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disorder that frequently exhibits low-grade inflammation, pro-oxidant activity, and gut dysbiosis. PCOS has become one of the leading causes of female infertility worldwide. Recently, omega-3 polyunsaturated fatty acids (PUFAs) have been proven to benefit metabolic disorders in PCOS patients. However, its roles in the regulation of metabolic and endocrinal balances in PCOS pathophysiology are not clear. In the present study, we aimed to explore how omega-3 PUFAs alleviate ovarian dysfunction and insulin resistance in mice with dehydroepiandrosterone (DHEA)-induced PCOS by modulating the gut microbiota. METHODS: We induced PCOS in female mice by injecting them with DHEA and then treated them with omega-3 PUFAs. 16S ribosomal DNA (rDNA) amplicon sequencing, fecal microbiota transplantation (FMT) and antibiotic treatment were used to evaluate the role of microbiota in the regulation of ovarian functions and insulin resistance (IR) by omega-3 PUFAs. To further investigate the mechanism of gut microbiota on omega-3-mediated ovarian and metabolic protective effects, inflammatory and oxidative stress markers in ovaries and thermogenic markers in subcutaneous and brown adipose tissues were investigated. RESULTS: We found that oral supplementation with omega-3 PUFAs ameliorates the PCOS phenotype. 16S rDNA analysis revealed that omega-3 PUFA treatment increased the abundance of beneficial bacteria in the gut, thereby alleviating DHEA-induced gut dysbiosis. Antibiotic treatment and FMT experiments further demonstrated that the mechanisms underlying omega-3 benefits likely involve direct effects on the ovary to inhibit inflammatory cytokines such as IL-1ß, TNF-α and IL-18. In addition, the gut microbiota played a key role in the improvement of adipose tissue morphology and function by decreasing multilocular cells and thermogenic markers such as Ucp1, Pgc1a, Cited and Cox8b within the subcutaneous adipose tissues. CONCLUSION: These findings indicate that omega-3 PUFAs ameliorate androgen-induced gut microbiota dysbiosis. The gut microbiota plays a key role in the regulation of omega-3-mediated IR protective effects in polycystic ovary syndrome mice. Moreover, omega-3 PUFA-regulated improvements in the ovarian dysfunction associated with PCOS likely involve direct effects on the ovary to inhibit inflammation. Our findings suggest that omega-3 supplementation may be a promising therapeutic approach for the treatment of PCOS by modulating gut microbiota and alleviating ovarian dysfunction and insulin resistance.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Síndrome do Ovário Policístico , Animais , Feminino , Camundongos , Desidroepiandrosterona/toxicidade , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/fisiopatologia , Ácidos Graxos Ômega-3/uso terapêutico
2.
J Ovarian Res ; 16(1): 87, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120599

RESUMO

n-3 PUFAs are classic antioxidant that can be used to treat follicular dysplasia and hyperinsulinemia caused by excessive oxidative stress in PCOS women. To investigate the effect of n-3 PUFA supplementation on the oocyte quality of polycystic ovary syndrome (PCOS) mice during in vitro maturation, a PCOS mouse model was established by dehydroepiandrosterone (DHEA). The GV oocytes of the control and PCOS groups were collected and cultured in vitro with or without n-3 PUFAs. After 14 h, the oocytes were collected. Our data demonstrated that the oocyte maturation rate of PCOS mice significantly increased after the addition of 50 µM n-3 PUFAs. The results of immunofluorescence showed that the abnormal rates of spindles and chromosomes in the PCOS + n-3 PUFA group were lower than those in the PCOS group. The mRNA expression of an antioxidant-related gene (Sirt1) and DNA damage repair genes (Brca1/Msh2) was found to be significantly rescued after n-3 treatment. Additionally, the results of living cell staining showed that the addition of n-3 PUFAs could reduce the levels of reactive oxygen species and mitochondrial superoxide in PCOS oocytes. In conclusion, the addition of 50 µM n-3 PUFAs during the in vitro maturation of PCOS mouse oocytes can improve the maturation rate by reducing the level of oxidative stress and the rate of spindle/chromosome abnormalities, providing valuable support during the IVM process.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Técnicas de Maturação in Vitro de Oócitos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Oócitos/metabolismo , Suplementos Nutricionais
3.
Front Cell Dev Biol ; 9: 648578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693006

RESUMO

Ovarian hyperstimulation syndrome (OHSS) is a common complication caused by ovulatory stimulation therapy, which manifests as an increase in ovarian volume, an increase in the number of oocytes retrieved, and increased vascular permeability throughout the body and especially in ovarian tissue. In our previous study, we found that electroacupuncture (EA) could prevent the progression of OHSS, by mainly affecting ovary. However, the specific molecules and the mechanism of this process were still unknown. In order to explore the underlying mechanism, OHSS rat model was established and EA treatment was performed, which was followed by proteomic analysis of ovaries. Results showed a significant increase in the expression level of CD200 in the ovaries of OHSS group treated with EA than those of OHSS group. Clinical data showed that the level of CD200 in follicular fluid was negatively correlated with the number of oocytes retrieved and serum E2 level. Further in vitro experiments showed a concentration-dependent role of human chorionic gonadotropin (hCG) in reducing CD200 and CD200R levels, and increasing inflammatory cytokine levels in cultured KGN cells. In human umbilical vein endothelial cells (HUVECs), the vascular barrier function was improved by CM (cultural medium from KGN cell) which treated with CD200Fc (CD200R agonist). Meanwhile, the results of in vivo experiments indicated that EA reduced the number of ovarian corpora lutea, decreased inflammatory response, and improved the vascular barrier function by increasing the expression of CD200 and CD200R in rat ovaries. These findings suggest that EA treatment may reduce oocyte number and maintain vascular barrier against OHSS through ovarian anti-inflammatory response mediated by CD200. Therefore, this study is the first to identify CD200 as a main of EA in the ovary and elucidate the possible mechanism of EA on preventing and treating OHSS, which provide a scientific basis for CD200 as an effector and indicator in EA treatment.

4.
Reprod Toxicol ; 98: 233-241, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33068716

RESUMO

Hydrogen sulfide (H2S), a gaseous intracellular signal transducer, participates in multiple physiological and pathological conditions, including reproductive conditions, and disrupts spermatogenesis. The blood-testis barrier (BTB) plays a vital role in spermatogenesis. However, the effect of H2S on the BTB and the underlying mechanism remain unclear. Herein, we examined the effect of H2S and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on the BTB and testicular functions. ICR male mice were randomly divided into the following groups: control, H2S exposure, and H2S exposure with ω-3 PUFAs intervention. The sperm parameters (sperm concentration and sperm motility) declined in the H2S group and improved in the ω-3 intervention group. BTB integrity was severely disrupted by H2S, and the BTB-related gene levels (ZO-1, Occludin, Claudin 11) decreased; ω-3 supplementation could alleviate BTB disruption by upregulating BTB-related genes, and TM4 Sertoli cells had a similar trend in vitro. p38 MAPK phosphorylation was upregulated in the Na2S treatment group and downregulated after ω-3 cotreatment. These findings suggest that H2S can impair the BTB and that ω-3 PUFAs supplementation can attenuate H2S toxicity in the male reproductive system. Our study elucidated the relationship between a gasotransmitter (H2S) and the BTB and identified the potential therapeutic effect of ω-3 PUFAs.


Assuntos
Barreira Hematotesticular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Sulfetos/toxicidade , Animais , Barreira Hematotesticular/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testosterona/sangue , Proteínas de Junções Íntimas/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Reprod Dev ; 64(1): 49-55, 2018 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-29249781

RESUMO

Brusatol, a quassinoid isolated from the fruit of Bruceajavanica, has recently been shown to inhibit nuclear factor erythroid 2-related factor 2 (Nrf2) via Keap1-dependent ubiquitination and proteasomal degradation or protein synthesis. Nrf2 is a transcription factor that regulates the cellular defense response. Most studies have focused on the effects of Nrf2 in tumor development. Here, the critical roles of Nrf2 in mouse early embryonic development were investigated. We found that brusatol treatment at the zygotic stage prevented the early embryo development. Most embryos stayed at the two-cell stage after 5 days of culture (P < 0.05). This effect was associated with the cell cycle arrest, as the mRNA level of CDK1 and cyclin B decreased at the two-cell stage after brusatol treatment. The embryo development potency was partially rescued by the injection of Nrf2 CRISPR activation plasmid. Thus, brusatol inhibited early embryo development by affecting Nrf2-related cell cycle transition from G2 to M phase that is dependent on cyclin B-CDK1 complex.


Assuntos
Ciclo Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Animais , Ciclo Celular/fisiologia , Regulação para Baixo/efeitos dos fármacos , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Extratos Vegetais/farmacologia , Quassinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA