Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Biol Sci ; 18(7): 2980-2993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541894

RESUMO

Photobiomodulation (PBM) has emerged as an alternative therapy involved in modulating a variety of biological effects. In this study, we verified whether PBM can affect cardiac physiological activity in mice through noninvasive irradiation using light-emitting diodes at a wavelength of 630 nm (LED-Red). We found that the PBM involved in regulating the repair of injured myocardium is wavelength-limited. LED-Red caused cardiomyocytes (CMs) that had exited the cell cycle to divide and proliferate again, and the cell proliferation ratio increased significantly with the accumulation of intracellular photopower. In addition, LED-Red promoted myocardial revascularization and myocardial regeneration, reduced the area of fibrosis in mice with myocardial infarction (MI), and thus improved cardiac contractile function. In regard to the mechanism, miRNA sequencing analysis showed that low-power LED-Red irradiation could induce differential changes in miRNAs in CMs. Among them, miR-136-5p was identified as a cardiac photo-sensitive miRNA and was obviously inhibited after stimulation, which produced a proliferation-promoting effect on CMs. Subsequent luciferase reporter assays confirmed the involvement of Ino80 as a binding target of miR-136-5p in the regulatory process of CM proliferation. Similarly, LED-Red irradiation elevated intracellular Ino80 expression. After knockdown of Ino80, the proliferation-promoting effect of LED-Red on CMs was inhibited. Collectively, this study demonstrates that LED-Red can promote CM proliferation by inhibiting cardiac photo-sensitive miRNA- miR-136-5p expression through targeting Ino80. The findings provided a new potential strategy for the treatment of ischemic cardiomyopathy (ICD).


Assuntos
Terapia com Luz de Baixa Intensidade , MicroRNAs , Infarto do Miocárdio , Animais , Apoptose , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
2.
Oxid Med Cell Longev ; 2021: 9962922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336126

RESUMO

Myocardial infarction refers to myocardial necrosis caused by acute or persistent coronary ischemia and hypoxia. It is considered to be one of the significant crises threatening human health in the world. Following myocardial infarction, collagen gradually replaces the original tissue due to the loss of many cardiomyocytes, myocardial contractile function decreases, and myocardial fibrosis eventually leads to heart failure. Phototherapy is a new treatment which has shown superior efficacy on the nerve, skeletal muscle, skin, and other tissues. Likewise, there is growing evidence that phototherapy also has many positive effects on the heart. Therefore, this article introduces the progress of research on phototherapy as a new therapeutic strategy in the treatment of myocardial infarction. The wavelength of photobiomodulation in the treatment of myocardial infarction is specific, and the influence of light source power and light duration on the tissue presents a bell-shaped distribution. Under these conditions, phototherapy can promote ATP synthesis and angiogenesis, inhibit the inflammatory response, improve heart function, reduce infarct size, and protect myocardium. In addition, we summarized the molecular mechanisms of phototherapy. According to the location of photoreceptors, they can be divided into mitochondrial and nonmitochondrial parts.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Infarto do Miocárdio/terapia , Animais , Humanos
3.
Int J Biochem Cell Biol ; 103: 81-88, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125666

RESUMO

The light emitting diodes (LEDs) irradiation has been demonstrated to be potential therapeutic strategies for several diseases. However, the blue LED effects remain largely unknown in colorectal cancer (CRC), which is a major cause of morbidity and mortality throughout the world. In this study, we determined the effects of blue LED irradiation, the maximal light emission at 470 nm in wavelength, in human CRC cell lines SW620 and HT29. The cells were irradiated with blue LED light for 0 J/cm2, 72 J/cm2, 144 J/cm2, 216 J/cm2 and 288 J/cm2 respectively. We found that irradiation with blue LED light induced a marked decrease of live cells and an increase of dead cells. Additionally, lower cell proliferation and a remarkably increase of cell apoptosis were observed in blue LED-irradiated cells as compared with non-irradiated control group. The cell migration was significantly inhibited by blue LED irradiation 24, 48 and 72 h later compared with non-treated group. Blue LED-treated CRC cells further displayed a remarkably inhibition of EMT process in CRC cells. Finally, we found the accumulation of ROS production and DNA damage were induced by blue LED irradiation. These results indicated that blue LED irradiation inhibits CRC cell proliferation, migration and EMT process as well as induces cell apoptosis, which may result from increased ROS accumulation and induction of DNA damage.


Assuntos
Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Neoplasias Colorretais/terapia , Transição Epitelial-Mesenquimal/efeitos da radiação , Luz , Fototerapia , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos
4.
EBioMedicine ; 32: 182-191, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29858017

RESUMO

Therapeutic efficiency of cardiac progenitor cells (CPCs) transplantation is limited by its low survival and retention in infarcted myocardium. Autophagy plays a critical role in regulating cell death and apoptosis, but the role of microRNAs (miRNAs) in oxidative stress-induced autophagy of CPCs remains unclear. This study aimed to explore if miRNAs mediate autophagy of c-kit+ CPCs. We found that the silencing of miR-143 promoted the autophagy of c-kit+ CPCs in response to H2O2, and the protective effect of miR-143 inhibitor was abrogated by autophagy inhibitor 3-methyladenine (3-MA). Furthermore, autophagy-related gene 7 (Atg7) was identified as the target gene of miR-143 by dual luciferase reporter assays. In vivo, after transfection with miR-143 inhibitor, c-kit+ CPCs from green fluorescent protein transgenic mice were more observed in infarcted mouse hearts. Moreover, transplantation of c-kit+ CPCs with miR-143 inhibitor improved cardiac function after myocardial infarction. Take together, our study demonstrated that miR-143 mediates oxidative stress-induced autophagy to enhance the survival of c-kit+ CPCs by targeting Atg7, which will provide a complementary approach for improving CPC-based heart repair.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , MicroRNAs/antagonistas & inibidores , Infarto do Miocárdio/terapia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/genética , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo
5.
ScientificWorldJournal ; 2012: 694703, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22919348

RESUMO

The role of hyperbaric oxygen therapy (HBOT) in the treatment of acute ischemic stroke is controversial. This prospective study assessed the efficacy and safety of HBOT as adjuvant treatment on 46 acute ischemic stroke in patients who did not receive thrombolytic therapy. The HBOT group (n = 16) received conventional medical treatment with 10 sessions of adjunctive HBOT within 3-5 days after stroke onset, while the control group (n = 30) received the same treatment but without HBOT. Early (around two weeks after onset) and late (one month after onset) outcomes (National Institutes of Health Stroke Scale, NIHSS scores) and efficacy (changes of NIHSS scores) of HBOT were evaluated. The baseline clinical characteristics were similar in both groups. Both early and late outcomes of the HBOT group showed significant difference (P ≤ 0.001). In the control group, there was only significant difference in early outcome (P = 0.004). For early efficacy, there was no difference when comparing changes of NIHSS scores between the two groups (P = 0.140) but there was statistically significant difference when comparing changes of NIHSS scores at one month (P ≤ 0.001). The HBOT used in this study may be effective for patients with acute ischemic stroke and is a safe and harmless adjunctive treatment.


Assuntos
Infarto Cerebral/terapia , Oxigenoterapia Hiperbárica , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
6.
Clin Chim Acta ; 412(13-14): 1234-9, 2011 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-21439275

RESUMO

INTRODUCTION: The effect of homocysteine (Hcy)-lowering therapy may be different in hemodialysis (HD) patients with and without diabetes mellitus (DM). METHODS: Stable HD patients with uremia were administered folic acid and vitamin B for 3 months. The impact of treatment was compared in patients with and without DM. RESULTS: A total of 61 patients (31 men and 30 women) aged 56 ± 13 y completed the study. Among these, 44 patients (72%) did not have DM and 17 (28%) had DM. At baseline, total Hcy and high-sensitivity C-reactive protein (hsCRP) levels were similar. After treatment, the levels of total Hcy and hsCRP were significantly decreased in the nondiabetic group (total Hcy level decreased from 33.63 ± 14.13 µmol/l to 18.94 ± 8.46 µmol/l, p<0.001; hsCRP level decreased from 0.58 mg/dl [range, 0.21-1.05 mg/dl] to 0.22 mg/dl [range, 0.11-0.53 mg/dl], p<0.001) but not in the diabetic group (total Hcy level decreased from 34.97 ± 17.12 µmol/l to 29.53 ± 11.36 µmol/l, p=0.057; hsCRP level decreased from 0.80 mg/dl [range, 0.24-1.47 mg/dl] to 0.49 mg/dl [range, 0.45-0.98 mg/dl], p=0.28). Serial monitoring of total Hcy level showed a more sustained effect of therapy on patients without DM. CONCLUSION: Folic acid and vitamin B administration significantly lower total Hcy and hsCRP levels in HD patients without DM but not in those with DM.


Assuntos
Complicações do Diabetes/sangue , Complicações do Diabetes/terapia , Homocisteína/sangue , Diálise Renal , Uremia/sangue , Uremia/terapia , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Complicações do Diabetes/tratamento farmacológico , Suplementos Nutricionais , Ácido Fólico/farmacologia , Ácido Fólico/uso terapêutico , Humanos , Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Uremia/complicações , Uremia/tratamento farmacológico , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA