Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 315: 116644, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37196814

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhuidu Formula (ZDF) is composed of triptolide, cinobufagin and paclitaxel, which are the active ingredients of Tripterygium wilfordii Hook. F, dried toad skin and Taxus wallichiana var. chinensis (Pilg) Florin, respectively. Modern pharmacological studies show that triptolide, cinobufagin, and paclitaxel are well-known natural compounds that exert anti-tumor effects by interfering with DNA synthesis, inducing tumor cell apoptosis, and inhibiting the dynamic balance of the tubulin. However, the mechanism by which the three compounds inhibit triple-negative breast cancer (TNBC) metastasis is unknown. OBJECTIVE: The objective of this investigation was to examine the inhibitory essences of ZDF on the metastasis of TNBC and elucidate its potential mechanism. MATERIALS AND METHODS: Cell viability of triptolide (TPL), cinobufagin (CBF), and paclitaxel (PTX) on MDA-MB-231 cells was assessed employing a CCK-8 assay. The drug interactions of the three drugs on MDA-MB-231 cells were determined in vitro utilizing the Chou-Talalay method. MDA-MB-231 cells were identified for migration, invasion and adhesion in vitro through the implementation of the scratch assay, transwell assay and adhesion assay, respectively. The formation of cytoskeleton protein F-actin was detected by immunofluorescence assay. The expressions of MMP-2 and MMP-9 in the supernatant of the cells were determined by ELISA analysis. The Western blot and RT-qPCR were employed to explore the protein expressions associated with the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. The anti-tumor efficacy of ZDF in vivo and its preliminary mechanism were investigated in the mouse 4T1 TNBC model. RESULTS: The results demonstrated that ZDF could significantly reduce the viability of the MDA-MB-231 cell, and the combination index (CI) values of actual compatibility experimental points were all less than 1, demonstrating a favorable synergistic compatibility relationship. It was found that ZDF reduces RhoA/ROCK and CDC42/MRCK dual signaling pathways, which are responsible for MDA-MB-231cell migration, invasion, and adhesion. Additionally, there has been a significant reduction in the manifestation of cytoskeleton-related proteins. Furthermore, the expression levels of RhoA, CDC42, ROCK2, and MRCKß mRNA and protein were down-regulated. ZDF significantly decreased the protein expressions of vimentin, cytokeratin-8, Arp2 and N-WASP, and inhibited actin polymerization and actomyosin contraction. Furthermore, MMP-2 and MMP-9 levels in the high-dose ZDF group were decreased by 30% and 26%, respectively. ZDF significantly reduced the tumor volume and protein expressions of ROCK2 and MRCKß in tumor tissues without eliciting any perceptible alterations in the physical mass of the mice, and the reduction was more pronounced than that of the BDP5290 treated group. CONCLUSION: The current investigation demonstrates that ZDF exhibits a proficient inhibitory impact on TNBC metastasis by regulating cytoskeletal proteins through the dual signaling pathways of RhoA/ROCK and CDC42/MRCK. Furthermore, the findings indicate that ZDF has significant anti-tumorigenic and anti-metastatic characteristics in breast cancer animal models.


Assuntos
Medicina Tradicional Chinesa , Miotonina Proteína Quinase , Invasividade Neoplásica , Paclitaxel , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Quinases Associadas a rho , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Transdução de Sinais/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , Miotonina Proteína Quinase/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Etnofarmacologia , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Células MDA-MB-231 , Adesão Celular/efeitos dos fármacos , Humanos , Animais , Camundongos , Metástase Neoplásica/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Sinergismo Farmacológico , Metaloproteinases da Matriz/metabolismo , Actinas/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-35201988

RESUMO

A brain-computer interface (BCI) based on motor imagery (MI) from the same limb can provide an intuitive control pathway but has received limited attention. It is still a challenge to classify multiple MI tasks from the same limb. The goal of this study is to propose a novel decoding method to classify the MI tasks of four joints of the same upper limb and the resting state. EEG signals were collected from 20 participants. A time-distributed attention network (TD-Atten) was proposed to adaptively assign different weights to different classes and frequency bands of the input multiband Common Spatial Pattern (CSP) features. The long short-term memory (LSTM) and dense layers were then used to learn sequential information from the reweight features and perform the classification. Our proposed method outperformed other baseline and deep learning-based methods and obtained the accuracies of 46.8% in the 5-class scenario and 53.4% in the 4-class scenario. The visualization results of attention weights indicated that the proposed framework can adaptively pay attention to alpha-band related features in MI tasks, which was consistent with the analysis of brain activation patterns. These results demonstrated the feasibility and interpretability of the attention mechanism in MI decoding and the potential of this fine MI paradigm to be applied for the control of a robotic arm or a neural prosthesis.


Assuntos
Interfaces Cérebro-Computador , Imaginação , Algoritmos , Eletroencefalografia , Humanos , Imaginação/fisiologia , Extremidade Superior
3.
J Ethnopharmacol ; 290: 115066, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35122975

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Oxytropis falcata Bunge is a legume distributed in Northwest China, which is mainly used to treat knife wounds and inflammation. Quercetin is a bioactive flavonoid in O. falcata and becomes a promising healing compound for its angiogenic and anti-inflammatory activities. However, the healing mechanism of quercetin in cutaneous wound remains elusive. AIM OF THE STUDY: The purpose of this study was to evaluate the healing effect of quercetin on cutaneous wound models in vivo and in vitro, and to reveal the Wnt/ß-catenin pathway and Telomerase reverse transcriptase (TERT) involved mechanisms. MATERIALS AND METHODS: The effects of quercetin on the proliferation and migration of 4 kinds of skin cells were determined by CCK-8 and scratch assay. The wound-healing capacity of quercetin was evaluated in cutaneous wound model of C57BL/6 mice and the wound healing degree was observed by histological staining. The expressions of inflammatory factors, growth factors and the related proteins were detected via Western blot and RT-qPCR analyses. The molecular docking was adopted to evaluate the binding ability of quercetin and TERT. RESULTS: Quercetin could promote both proliferation and migration of fibroblasts, and enhance cutaneous wound healing capacity in mice. Compared to the control group, the wound healing rates in low (1.5 mg/mL), medium (3.0 mg/mL) and high dose (6.0 mg/mL) quercetin groups reached 94.67%, 97.31% and 98.42%, respectively. Moreover, the dermal structure in quercetin treated mice restored normal and the content of collagen fiber became abundant after administration. The levels of inflammatory factors, including tumor necrosis factor-α, interleukin-1ß and interleukin-6 were significantly reduced after quercetin administration. Among which, the level of IL-1ß in cutaneous wound was 0.007 times higher than that of the control group when treated with quercetin of high dose (6.0 mg/mL). The improved level of GSH in quercetin treated cutaneous wounds also indicated its higher antioxidant ability. In addition, dose-dependent positive associations were found in the expression levels of vascular endothelial growth factor, fibroblast growth factor and alpha smooth muscle actin in quercetin treated cutaneous wounds. The significantly upregulated protein levels of Wnt and ß-catenin further indicated the important role of quercetin in promoting wound healing in mice. According to molecular docking analysis, the formed hydrogen bonds between quercetin and Ala195, Gln308, Asn369 and Lys372 residues of TERT also indicated the indispensable role of TERT in improving wound healing capacity. CONCLUSION: Quercetin effectively promoted cutaneous wound healing by enhancing the proliferation and migration of fibroblasts, as well as inhibiting inflammation and increasing the expression of growth factors in mice via Wnt/ß-catenin signaling pathway and TERT. It provides a basis for a more thorough understanding of mechanism of action of O. falcata Bunge in the treatment of knife wounds and burns.


Assuntos
Oxytropis/química , Quercetina/farmacologia , Telomerase/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , China , Relação Dose-Resposta a Droga , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Humanos , Mediadores da Inflamação , Interleucina-1beta/efeitos dos fármacos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Pele/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA