Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(4): 2268-2277, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38221735

RESUMO

Emulsions have been applied in a number of industries such as pharmaceutics, cosmetics, and food, which are also of great scientific interest. Although aqueous emulsions are commonly used in our daily life, oil-in-oil (o/o) emulsions also play an irreplaceable role in view of their unique physics and complementary applications. In this paper, we investigate typical behaviors of organic droplets surrounded by organic medium (o/o emulsions) with different functional groups controlled by the AC electric field. Droplet behaviors can be catalogued into five types: namely, "no effect", "movement", "deformation", "interface rupture", and "disorder". We identify the key dimensionless number Wee·Ca, combined with the channel geometry, for characterizing the typical behaviors in silicon oil/1,6-hexanediol diacrylate and mineral oil/1,6-hexanediol diacrylate emulsions. Unlike aqueous emulsion, the Maxwell-Wagner relaxation inhibits the electric effect and leads to an effective frequency, ranging from 0.5 to 3 kHz. The increasing viscosity of the droplet facilitates the escalation by promoting the shearing effect under the same flow conditions. Ethylene glycol droplets primarily show the efficient coalescence even at a low Wee·Ca, which is attributed to the attraction of free charges induced by the increasing conductivity. In 1,6-hexanediol diacrylate/silicon oil emulsion, the droplet tends to form a liquid film that expands into the entire channel due to the affinity of the droplet to the channel wall. A variety of elongated columns are observed to oscillate between the electrodes at high voltages. These findings can contribute to understanding the electrohydrodynamic physics in o/o emulsion and controlling droplet behaviors in a fast response, programmable, and high-throughput way. We expect that this droplet manipulation technology can be widely adopted in a broad range of chemical synthesis and biological and material science.

2.
Cell ; 186(2): 398-412.e17, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669474

RESUMO

Public health studies indicate that artificial light is a high-risk factor for metabolic disorders. However, the neural mechanism underlying metabolic modulation by light remains elusive. Here, we found that light can acutely decrease glucose tolerance (GT) in mice by activation of intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating the hypothalamic supraoptic nucleus (SON). Vasopressin neurons in the SON project to the paraventricular nucleus, then to the GABAergic neurons in the solitary tract nucleus, and eventually to brown adipose tissue (BAT). Light activation of this neural circuit directly blocks adaptive thermogenesis in BAT, thereby decreasing GT. In humans, light also modulates GT at the temperature where BAT is active. Thus, our work unveils a retina-SON-BAT axis that mediates the effect of light on glucose metabolism, which may explain the connection between artificial light and metabolic dysregulation, suggesting a potential prevention and treatment strategy for managing glucose metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Camundongos , Animais , Humanos , Tecido Adiposo Marrom/metabolismo , Hipotálamo/metabolismo , Termogênese/fisiologia , Retina , Células Ganglionares da Retina , Glucose/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-35341142

RESUMO

Heart failure (HF) is a serious manifestation or advanced stage of various cardiovascular diseases, and its mortality and rehospitalization rate are still on the rise in China. Based on the network pharmacology method, 59 components of Zhen Wu decoction (ZWD) and 83 target genes related to HF were obtained. Through the PPI network, four potential therapeutic targets were identified: AKT1, IL6, JUN, and MAPK8. The beneficial components of ZWD might intervene HF through the AGE-RAGE signalling pathway in the diabetes component, fluid shear stress and atherosclerosis, the TNF signalling pathway, TB, and Kaposi sarcoma related herpesvirus infection, according to a KEGG enrichment study. The protein interaction network of candidate targets was constructed by the STRING database, and the protein interaction network was clustered by MEODE software. GO and KEGG enrichment analyses were performed on the core modules obtained by clustering. Finally, AutoDock Vina software was used for molecular docking verification of key targets and active ingredients. The result was that 75 active ingredients and 109 genes were screened as potential active ingredients and potential targets of Shengjie Tongyu decoction for CHF treatment. The main active components were quercetin, luteolin, kaempferol, dehydrated icariin, isorhamnetin, formononetin, and other flavonoids. Il-6, MAPK1, MAPK8, AKT1, VEGFA, and JUN were selected as the core targets. Molecular docking showed that the key components were well connected with the target. GO enrichment analysis showed that Shengjie Tongyu decoction could play a role through multiple biological pathways including angiogenesis, regulation of endothelial cell proliferation, binding of cytokine receptors, negative regulation of apoptotic signalling pathways, regulation of nitric oxide synthase activity, and reactive oxygen metabolism. Key pathways mainly focus on the toll-like receptor signalling pathway, nod-like receptor signalling pathway, MAPK signalling pathway, mTOR signalling pathway, JAK-STAT signalling pathway, VEGF signalling pathway, and other pathways. Through molecular docking technology, it was found that a variety of effective components in ZWD, such as kaempferol. Molecular docking technology has preliminatively verified the network pharmacology and laid a foundation for the follow-up pharmacological research.

4.
Nat Commun ; 12(1): 6403, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737329

RESUMO

The reticulotegmental nucleus (RtTg) has long been recognized as a crucial component of brainstem reticular formation (RF). However, the function of RtTg and its related circuits remain elusive. Here, we report a role of the RtTg in startle reflex, a highly conserved innate defensive behaviour. Optogenetic activation of RtTg neurons evokes robust startle responses in mice. The glutamatergic neurons in the RtTg are significantly activated during acoustic startle reflexes (ASR). Chemogenetic inhibition of the RtTg glutamatergic neurons decreases the ASR amplitudes. Viral tracing reveals an ASR neural circuit that the cochlear nucleus carrying auditory information sends direct excitatory innervations to the RtTg glutamatergic neurons, which in turn project to spinal motor neurons. Together, our findings describe a functional role of RtTg and its related neural circuit in startle reflexes, and demonstrate how the RF connects auditory system with motor functions.


Assuntos
Tronco Encefálico/fisiologia , Reflexo de Sobressalto/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Nervo Coclear/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Nat Neurosci ; 23(7): 869-880, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483349

RESUMO

Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC→dpHb→NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.


Assuntos
Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Depressão/fisiopatologia , Luz/efeitos adversos , Vias Visuais/fisiologia , Animais , Depressão/etiologia , Habenula/fisiologia , Habenula/efeitos da radiação , Camundongos , Núcleo Accumbens/fisiologia , Núcleo Accumbens/efeitos da radiação , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Vias Visuais/efeitos da radiação
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 30(5): 1085-8, 2010 May.
Artigo em Chinês | MEDLINE | ID: mdl-20501401

RESUMO

OBJECTIVE: To explore the effect of PI3K p85alpha gene silencing on the 5-fluorouracil (5-FU)-induced apoptosis of colorectal cancer cells. METHODS: The PI3K p85alpha/RNAi transfected cells (PI3K p85alpha/RNAi-LoVo) were cultured in RPMI 1640 supplemented with 10% fetal calf serum and 500 microg/ml G418. The 50% inhibitory concentration (IC50) values of 5-FU (0.000625, 0.00125, 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, 0.32 micromol/ml) were evaluated by MTT assay. Mitochondrial membrane potential was detected by JC-1 fluorescence, and Western blotting was used to analyze the expression of apoptotic proteins Bcl-6 and Bim. RESULTS: Compared with the untransfected LoVo cells, PI3K p85alpha/RNAi-LoVo showed obviously decreased IC(50) of 5-FU (P=0.000). The mitochondrial membrane potential of PI3K p85alpha/RNAi-LoVo cells was significantly lower than that of LoVo cells, suggesting that silencing PI3K p85alpha expression increased the sensitivity of LoVo cells to 5-FU. The expression of apoptotic protein Bcl-6 and Bim were significantly higher in PI3K p85alpha/RNAi-LoVo cells treated with 5-FU than LoVo cells (P=0.000). CONCLUSION: PI3Kp85alpha gene silencing can significantly promote 5-FU-induced apoptosis of colorectal LoVo cells.


Assuntos
Apoptose/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Neoplasias Colorretais/patologia , Fluoruracila/farmacologia , Interferência de RNA , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias Colorretais/genética , Terapia Genética/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA