Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451925

RESUMO

INTRODUCTION: The functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans. METHODS: We recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tones. RESULTS: Twenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak. CONCLUSION: We found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.


Assuntos
Implante Coclear , Implantes Cocleares , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Estimulação Acústica/métodos , Audiometria de Resposta Evocada/métodos , Nervo Coclear/fisiologia , Ruído , Masculino
2.
PLoS One ; 15(5): e0233224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32428025

RESUMO

Epidemiological evidence shows an association between hearing loss and dementia in elderly people. However, the mechanisms that connect hearing impairments and cognitive decline are still unknown. Here we propose that a suprathreshold auditory-nerve impairment is associated with cognitive decline and brain atrophy. METHODS: audiological, neuropsychological, and brain structural 3-Tesla MRI data were obtained from elders with different levels of hearing loss recruited in the ANDES cohort. The amplitude of waves I (auditory nerve) and V (midbrain) from auditory brainstem responses were measured at 80 dB nHL. We also calculated the ratio between wave V and I as a proxy of suprathreshold brainstem function. RESULTS: we included a total of 101 subjects (age: 73.5 ± 5.2 years (mean ± SD), mean education: 9.5 ± 4.2 years, and mean audiogram thresholds (0.5-4 kHz): 25.5 ± 12.0 dB HL). We obtained reliable suprathreshold waves V in all subjects (n = 101), while replicable waves I were obtained in 92 subjects (91.1%). Partial Spearman correlations (corrected by age, gender, education and hearing thresholds) showed that reduced suprathreshold wave I responses were associated with thinner temporal and parietal cortices, and with slower processing speed as evidenced by the Trail-Making Test-A and digit symbol performance. Non-significant correlations were obtained between wave I amplitudes and other cognitive domains. CONCLUSIONS: These results evidence that reduced suprathreshold auditory nerve responses in presbycusis are associated with slower processing speed and brain structural changes in temporal and parietal regions.


Assuntos
Percepção Auditiva/fisiologia , Disfunção Cognitiva/metabolismo , Presbiacusia/fisiopatologia , Estimulação Acústica , Idoso , Idoso de 80 Anos ou mais , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Encéfalo/fisiopatologia , Nervo Coclear/fisiologia , Disfunção Cognitiva/etiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Audição/fisiologia , Humanos , Masculino , Ruído , Lobo Parietal/fisiopatologia , Presbiacusia/metabolismo , Lobo Temporal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA