Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166870, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690757

RESUMO

Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.

2.
J Exp Bot ; 74(17): 5363-5373, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37314063

RESUMO

In response to herbivory, many grasses, including crops such as wheat, accumulate significant levels of silicon (Si) as an antiherbivore defence. Damage-induced increases in Si can be localized in damaged leaves or be more systemic, but the mechanisms leading to these differences in Si distribution remain untested. Ten genetically diverse wheat landraces (Triticum aestivum) were used to assess genotypic variation in Si induction in response to mechanical damage and how this was affected by exogenous Si supply. Total and soluble Si levels were measured in damaged and undamaged leaves as well as in the phloem to test how Si was allocated to different parts of the plant after damage. Localized, but not systemic, induction of Si defences occurred, and was more pronounced when plants had supplemental Si. Damaged plants had significant increases in Si concentration in their damaged leaves, while the Si concentration in undamaged leaves decreased, such that there was no difference in the average Si concentration of damaged and undamaged plants. The increased Si in damaged leaves was due to the redirection of soluble Si, present in the phloem, from undamaged to damaged plant parts, potentially a more cost-effective defence mechanism for plants than increased Si uptake.


Assuntos
Silício , Triticum , Triticum/metabolismo , Silício/metabolismo , Poaceae/metabolismo , Plantas/metabolismo , Herbivoria , Folhas de Planta/metabolismo
3.
Rice (N Y) ; 15(1): 8, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35112196

RESUMO

Silicon (Si) fertiliser can improve rice (Oryza sativa) tolerance to salinity. The rate of Si uptake and its associated benefits are known to differ between plant genotypes, but, to date, little research has been done on how the benefits, and hence the economic feasibility, of Si fertilisation varies between cultivars. In this study, a range of rice cultivars was grown both hydroponically and in soil, at different levels of Si and NaCl, to determine cultivar variation in the response to Si. There was significant variation in the effect of Si, such that Si alleviated salt-induced growth inhibition in some cultivars, while others were unaffected, or even negatively impacted. Thus, when assessing the benefits of Si supplementation in alleviating salt stress, it is essential to collect cultivar-specific data, including yield, since changes in biomass were not always correlated with those seen for yield. Root Si content was found to be more important than shoot Si in protecting rice against salinity stress, with a root Si level of 0.5-0.9% determined as having maximum stress alleviation by Si. A cost-benefit analysis indicated that Si fertilisation is beneficial in mild stress, high-yield conditions but is not cost-effective in low-yield production systems.

4.
Curr Opin Plant Biol ; 12(3): 250-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19473870

RESUMO

Plants require calcium, magnesium, nitrogen, phosphorous, potassium and sulfur in relatively large amounts (>0.1% of dry mass) and each of these so-called macronutrients is essential for a plant to complete its life cycle. Normally, these minerals are taken up by plant roots from the soil solution in ionic form with the metals Ca(2+), Mg(2+) and K(+) present as free cations, P and S as their oxyanions phosphate (PO(4)(3-)) and sulfate (SO(4)(2-)) and N as anionic nitrate (NO(3)(-)) or cation ammonium (NH(4)(+)). Recently, important progress has been made in identifying transport and regulatory mechanisms for macronutrients and the mechanisms of uptake and distribution. These and the main physiological roles of each nutrient will be discussed.


Assuntos
Minerais/metabolismo , Plantas/metabolismo , Transporte Biológico/fisiologia , Cálcio/metabolismo , Magnésio/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Enxofre/metabolismo
5.
J Exp Bot ; 57(5): 1137-47, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16263900

RESUMO

Exposure to high ambient levels of NaCl affects plant water relations and creates ionic stress in the form of the cellular accumulation of Cl- and, in particular, Na+ ions. However, salt stress also impacts heavily on the homeostasis of other ions such as Ca2+, K+, and NO(3)(-) and therefore requires insights into how transport and compartmentation of these nutrients is altered during salinity stress. A genomics approach can greatly help with the identification of genes, and therefore potentially gene products, that are involved in plant salinity. Both the literature and public databases contain the results of many genomics studies and, in this report, those data are collated in the context of cation membrane transport and salinity. The efficacy of genomics approaches in isolation is low due to large inherent variability and the exclusion of gene products that are predominantly regulated post-transcriptionally. In conjunction with complementary approaches, however, transcriptomics can help identify important transcripts and relevant associations between physiological processes. This analysis identified (i) vascular K+ circulation, (ii) root shoot translocation of Ca2+, and (iii) transition metal homeostasis as potentially important aspects of the plant response to salt stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/fisiologia , Cloreto de Sódio/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Cátions Monovalentes/metabolismo , Perfilação da Expressão Gênica , Genômica , Homeostase/fisiologia , Metais/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Potássio/metabolismo , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA