Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(2): 610-5, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203976

RESUMO

The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Hipotálamo/citologia , Miopatia da Parte Central/genética , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Fluorescência , Técnicas de Introdução de Genes , Hipotálamo/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
2.
J Biol Chem ; 279(36): 37566-74, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15226293

RESUMO

The role of the sequence surrounding M4 in ryanodine receptors (RyR) in membrane association and function was investigated. This sequence contains a basic, 19-amino acid M3/M4 loop, a hydrophobic 44-49 amino acid sequence designated M4 (or M4a/M4b), and a hydrophilic M4/M5 loop. Enhanced green fluorescent protein (EGFP) was inserted into RyR1 and truncated just after the basic sequence, just after M4, within the M4/M5 loop, just before M5 and just after M5. The A52 epitope was inserted into RyR2 and truncated just after M4a. Analysis of these constructs ruled out a M3/M4 transmembrane hairpin and narrowed the region of membrane association to M4a/M4b. EGFP inserted between M4a and M4b in full-length RyR2 was altered conformationally, losing fluorescence and gaining trypsin sensitivity. Although it was accessible to an antibody from the cytosolic side, tryptic fragments were membrane-bound. The expressed protein containing EGFP retained caffeine-induced Ca(2+) release channel function. These results suggest that M4a/M4b either forms a transmembrane hairpin or associates in an unorthodox fashion with the cytosolic leaflet of the membrane, possibly involving the basic M3/M4 loop. The expression of a mutant RyR1, Delta4274-4535, deleted in the sequence surrounding both M3 and M4, restored robust, voltage-gated L-type Ca(2+) currents and Ca(2+) transients in dyspedic myotubes, demonstrating that this sequence is not required for either orthograde (DHPR activation of sarcoplasmic reticulum Ca(2+) release) or retrograde (RyR1 increase in DHPR Ca(2+) channel activity) signals of excitation-contraction coupling. Maximal amplitudes of L-currents and Ca(2+) transients with Delta4274-4535 were larger than with wild-type RyR1, and voltage-gated sarcoplasmic reticulum Ca(2+) release was more sensitive to activation by sarcolemmal voltage sensors. Thus, this region may act as a negative regulatory module that increases the energy barrier for Ca(2+) release channel opening.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
J Biol Chem ; 279(31): 32515-23, 2004 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-15133025

RESUMO

Residues in conserved motifs (625)TGD, (676)FARXXPXXK, and (701)TGDGVND in domain P of sarcoplasmic reticulum Ca(2+)-ATPase, as well as in motifs (601)DPPR and (359)NQR(/K)MSV in the hinge segments connecting domains N and P, were examined by mutagenesis to assess their roles in nucleotide and Mg(2+) binding and stabilization of the Ca(2+)-activated transition state for phosphoryl transfer. In the absence of Mg(2+), mutations removing the charges of domain P residues Asp(627), Lys(684), Asp(703), and Asp(707) increased the affinity for ATP and 2',3'-O-(2,4,6-trinitrophenyl)-8-azidoadenosine 5'-triphosphate. These mutations, as well as Gly(626)--> Ala, were inhibitory for ATP binding in the presence of Mg(2+) and for tight binding of the beta,gamma-bidentate chromium(III) complex of ATP. The hinge mutations had pronounced, but variable, effects on ATP binding only in the presence of Mg(2+). The data demonstrate an unfavorable electrostatic environment for binding of negatively charged nucleotide in domain P and show that Mg(2+) is required to anchor the phosphoryl group of ATP at the phosphorylation site. Mutants Gly(626) --> Ala, Lys(684) --> Met, Asp(703) --> Ala/Ser/Cys, and mutants with alteration to Asp(707) exhibited very slow or negligible phosphorylation, making it possible to measure ATP binding in the pseudo-transition state attained in the presence of both Mg(2+) and Ca(2+). Under these conditions, ATP binding was almost completely blocked in Gly(626) --> Ala and occurred with 12- and 7-fold reduced affinities in Asp(703) --> Ala and Asp(707) --> Cys, respectively, relative to the situation in the presence of Mg(2+) without Ca(2+), whereas in Lys(684) --> Met and Asp(707) --> Ser/Asn the affinity was enhanced 14- and 3-5-fold, respectively. Hence, Gly(626) and Asp(703) seem particularly critical for mediating entry into the transition state for phosphoryl transfer upon Ca(2+) binding at the transport sites.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Magnésio/química , Retículo Sarcoplasmático/metabolismo , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Animais , Ácido Aspártico/química , Transporte Biológico , Células COS , Cálcio/química , Catálise , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Glicina/química , Cinética , Modelos Moleculares , Mutagênese , Mutação , Nucleotídeos/química , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Fatores de Tempo
4.
Anesthesiology ; 99(2): 289-96, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12883401

RESUMO

BACKGROUND: The search for novel mutations in the ryanodine receptor subtype 1 (RYR1) gene causing malignant hyperthermia and central core disease is hampered by the fact that the gene contains 106 exons. Searching for novel mutations in complementary DNA (cDNA) requires an invasive muscle biopsy. Accordingly, an alternate source of RYR1 cDNA was sought for sequence analysis. METHODS: Leukocytes were isolated from human blood and used for extraction of RNA and reverse transcription of messenger RNA into cDNA. A detailed protocol was developed in which overlapping fragments of RYR1 cDNA were amplified by polymerase chain reaction in a series of steps and used for double-strand sequencing. RESULTS: The sequences of full-length leukocyte RYR1 cDNA obtained from four human blood samples were shown to be identical to the sequence of a human muscle RYR1 cDNA. The incidence of aberrant splicing was more pronounced in the blood-derived cDNAs, but this could be minimized by adequate sample preparation. Protocols to sequence alternatively spliced products were also developed. Several silent nucleotide polymorphisms were detected, and minor revisions were made to the RYR1 sequence. CONCLUSIONS: Because there are no differences in RYR1 transcript structure between muscle and leukocytes, aside from those that may be ascribed to RNA splicing aberrations during processing, leukocytes seem to be an adequate substitute tissue for screening the RYR1 gene for previously undiscovered mutations in families with malignant hyperthermia or central core disease.


Assuntos
Leucócitos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Humanos , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transcrição Gênica/genética
5.
Anesthesiology ; 99(2): 297-302, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12883402

RESUMO

BACKGROUND: To determine whether malignant hyperthermia (MH) susceptibility in a Canadian pedigree is associated with a mutation in the ryanodine receptor subtype 1 (RYR1) gene, the complete RYR1 transcript obtained from the leukocytes of one MH-susceptible family member was sequenced, using a newly developed protocol. METHODS: RNA was extracted from leukocytes and converted into complementary DNA. Overlapping fragments of RYR1 complementary DNA were amplified by the polymerase chain reaction and used for double-strand sequencing to find a single mutation likely to be causal of MH susceptibility. Inheritance of the mutation in the family was studied by restriction endonuclease analysis and/or sequencing of genomic DNA and compared to available caffeine halothane contracture test data. The mutation was introduced into rabbit RYR1 complementary DNA, the complementary DNA was expressed in human embryonic kidney line 293 cells, and Ca2+ release by the mutant Ca2+ release channel was measured following the addition of caffeine and halothane. RESULTS: A novel arginine 328 to tryptophan mutation in RYR1 was detected by direct sequencing of the RYR1 transcript from leukocytes of one MH-susceptible individual. A causal role for this mutation in MH is indicated by cosegregation of the mutation with the MH-susceptible phenotype within the family and by the demonstration that the mutant channel has increased sensitivity to both caffeine and halothane. CONCLUSIONS: The feasibility of using complete RYR1 transcripts from leukocytes for sequence analysis offers an efficient and noninvasive method for scanning RYR1 for novel mutations.


Assuntos
Leucócitos/química , Hipertermia Maligna/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Substituição de Aminoácidos/genética , Anestésicos Inalatórios , Cafeína , Linhagem Celular , DNA Complementar/biossíntese , DNA Complementar/genética , Halotano , Humanos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Mutação/genética , Linhagem , Inibidores de Fosfodiesterase , RNA/biossíntese , RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
6.
Proc Natl Acad Sci U S A ; 100(9): 5040-5, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12692302

RESUMO

Phospholamban (PLN), a regulator of sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs), interacts with both the cytosolic N domain and transmembrane helices M2, M4, M6, and M9 of SERCA. Amino acids in the transmembrane domain of PLN that are predicted to interact with SERCA1a are conserved in sarcolipin (SLN), a functional PLN homologue. Accordingly, the effects of critical mutations in SERCA1a, PLN, and NF-SLN (SLN tagged N-terminally with a FLAG epitope) on NF-SLN/SERCA1a and PLN/NF-SLN/SERCA1a interactions were compared. Critical mutations in SERCA1a and NF-SLN diminished functional interactions between SERCA1a and NF-SLN, indicating that NF-SLN and PLN interact with some of the same amino acids in SERCA1a. Mutations in PLN or NF-SLN affected the amount of SERCA1a that was coimmunoprecipitated in each complex with antibodies against either PLN or SLN, but not the pattern of coimmunoprecipitation. PLN mutations had more dramatic effects on SERCA1a coimmunoprecipitation than SLN mutations, suggesting that PLN dominates in the primary interaction with SERCA1a. Coimmunoprecipitation also confirmed that PLN and NF-SLN form a heterodimer that interacts with SERCA1a in a regulatory fashion to form a very stable PLN/NF-SLN/SERCA1a complex. Modeling showed that the SLN/SERCA1a complex closely resembles the PLN/SERCA1a complex, but with the luminal end of SLN extending to the loop connecting M1 and M2, where Tyr-29 and Tyr-31 interact with aromatic residues in SERCA1a. Modeling of the PLN/SLN/SERCA1a complex predicts that the regulator binding cavity in the E(2) conformation of SERCA1a can accommodate both SLN and PLN helices, but not two PLN helices.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Proteínas Musculares/fisiologia , Proteolipídeos/fisiologia , Sequência de Aminoácidos , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , ATPases Transportadoras de Cálcio/química , Linhagem Celular , DNA Complementar , Humanos , Modelos Moleculares , Proteínas Musculares/química , Proteínas Musculares/genética , Testes de Precipitina , Ligação Proteica , Proteolipídeos/química , Proteolipídeos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
7.
J Biol Chem ; 277(30): 26725-8, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12032137

RESUMO

Sarcolipin (SLN), a regulator of the sarco(endo)plasmic reticulum Ca(2+)-ATPase of fast-twitch skeletal muscle (SERCA1a), is also expressed in cardiac and slow-twitch skeletal muscles where phospholamban (PLN) and SERCA2a are expressed. Co-expression in HEK-293 cells of SLN tagged N-terminally with a FLAG epitope (NF-SLN), PLN, and SERCAs followed by measurement of the Ca(2+) dependence of Ca(2+) transport activity in isolated microsomal fractions showed that NF-SLN can reduce the apparent Ca(2+) affinity of both SERCA1a (DeltaK(Ca) = -0.22 +/- 0.01 pCa units) and SERCA2a (DeltaK(Ca) = -0.37 +/- 0.04 pCa units). When SERCA1a or SERCA2a were co-expressed with both NF-SLN and PLN, inhibition was synergistic, reducing DeltaK(Ca) by about -1.0 pCa units. Co-immunoprecipitation showed that NF-SLN increased the binding of PLN to SERCA, whereas PLN did not increase the binding of NF-SLN to SERCA. Elevated Ca(2+) dissociates both PLN and NF-SLN from their complexes with both SERCA1a and SERCA2a, but NF-SLN induced resistance to Ca(2+) dissociation of the PLN.SERCA complex. Co-immunoprecipitation of PLN and NF-SLN without SERCA showed that NF-SLN binds directly to PLN and that NF-SLN inhibits the formation of PLN pentamers. Thus the ability of NF-SLN to elevate the content of PLN monomers can account, at least in part, for the superinhibitory effects of NF-SLN in the presence of PLN.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas Musculares/fisiologia , Proteolipídeos/fisiologia , Western Blotting , Cálcio/metabolismo , Linhagem Celular , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Epitopos , Humanos , Cinética , Microssomos/metabolismo , Fibras Musculares de Contração Rápida/enzimologia , Músculo Esquelético/enzimologia , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA