Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36829922

RESUMO

Spinal cord injury (SCI) is a devastating condition that has physical and psychological consequences for patients. SCI is accompanied by scar formation and systemic inflammatory response leading to an intense degree of functional loss. The catechin, epigallocatechin gallate (EGCG), an active compound found in green tea, holds neuroprotective features and is known for its anti-inflammatory potential. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two functionally distinct complexes termed mTOR complex 1 and 2 (mTORC1; mTORC2). Inhibition of mTORC1 by rapamycin causes neuroprotection, leading to partial recovery from SCI. In this study the effects of EGCG, PP242 (an inhibitor of both complexes of mTOR), and a combination of EGCG and PP242 in SCI have been examined. It has been found that both EGCG and PP242 significantly improved sensory/motor functions following SCI. However, EGCG appeared to be more effective (BBB motor test, from 2 to 8 weeks after SCI, p = 0.019, p = 0.007, p = 0.006, p = 0.006, p = 0.05, p = 0.006, and p = 0.003, respectively). The only exception was the Von Frey test, where EGCG was ineffective, while mTOR inhibition by PP242, as well as PP242 in combination with EGCG, significantly reduced withdrawal latency starting from week three (combinatorial therapy (EGCG + PP242) vs. control at 3, 5, and 7 weeks, p = 0.011, p = 0.007, and p = 0.05, respectively). It has been found that EGCG was as effective as PP242 in suppressing mTOR signaling pathways, as evidenced by a reduction in phosphorylated S6 expression (PP242 (t-test, p < 0.0001) or EGCG (t-test, p = 0.0002)). These results demonstrate that EGCG and PP242 effectively suppress mTOR pathways, resulting in recovery from SCI in rats, and that EGCG acts via suppressing mTOR pathways.

2.
Sci Rep ; 9(1): 7660, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113985

RESUMO

We investigated the effect of a Multiwave Locked System laser (with a simultaneous 808 nm continuous emission and 905 nm pulse emission) on the spinal cord after spinal cord injury (SCI) in rats. The functional recovery was measured by locomotor tests (BBB, Beam walking, MotoRater) and a sensitivity test (Plantar test). The locomotor tests showed a significant improvement of the locomotor functions of the rats after laser treatment from the first week following lesioning, compared to the controls. The laser treatment significantly diminished thermal hyperalgesia after SCI as measured by the Plantar test. The atrophy of the soleus muscle was reduced in the laser treated rats. The histopathological investigation showed a positive effect of the laser therapy on white and gray matter sparing. Our data suggests an upregulation of M2 macrophages in laser treated animals by the increasing number of double labeled CD68+/CD206+ cells in the cranial and central parts of the lesion, compared to the control animals. A shift in microglial/macrophage polarization was confirmed by gene expression analysis by significant mRNA downregulation of Cd86 (marker of inflammatory M1), and non-significant upregulation of Arg1 (marker of M2). These results demonstrated that the combination of 808 nm and 905 nm wavelength light is a promising non-invasive therapy for improving functional recovery and tissue sparing after SCI.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Traumatismos da Medula Espinal/terapia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Locomoção , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/genética , Lectinas de Ligação a Manose/metabolismo , Ratos , Ratos Wistar , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Regeneração da Medula Espinal
3.
Neuropharmacology ; 126: 213-223, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899730

RESUMO

Spinal cord injury (SCI) is a debilitating condition which is characterized by an extended secondary injury due to the presence of inflammatory local milieu. Epigallocatechin gallate (EGCG) appears to possess strong neuroprotective properties. Here, we evaluated the beneficial effect of EGCG on recovery from SCI. Male Wistar rats were given either EGCG or saline directly to the injured spinal cord and thereafter a daily IP injection. Behavior recovery was monitored by BBB, plantar, rotarod and flat-beam tests. The levels of inflammatory cytokines were determined on days 1, 3, 7, 10 and 14 after SCI. Additionally, NF-κB pathway activity was evaluated. The results demonstrated that EGCG-treated rats displayed a superior behavioral performance in a flat beam test, higher axonal sprouting and positive remodelation of glial scar. Cytokine analysis revealed a reduction in IL-6, IL2, MIP1α and RANTES levels on days 1 and 3, and an upregulation of IL-4, IL-12p70 and TNFα 1 day following SCI in EGCG-treated rats. Treatment with EGCG was effective in decreasing the nuclear translocation of subunit p65 (RelA) of the NF-κB dimer, and therefore canonical NF-κB pathway attenuation. A significant increase in the gene expression of growth factors (FGF2 and VEGF), was noted in the spinal cord of EGCG-treated rats. Further, EGCG influenced expression of M1 and M2 macrophage markers. Our results have demonstrated a therapeutic value of EGCG in SCI, as observed by better behavioral performance measured by flat beam test, modulation of inflammatory cytokines and induction of higher axonal sprouting.


Assuntos
Catequina/análogos & derivados , Citocinas/metabolismo , Mielite/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Catequina/administração & dosagem , Mediadores da Inflamação/metabolismo , Masculino , Mielite/complicações , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/prevenção & controle , Chá/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA