Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36015136

RESUMO

Sideritis sipylea Boiss. (Fam. Lamiaceae) is an endemic plant of the North Aegean Islands (Greece), commonly known as ironwort. Traditionally, its aerial parts have been used to relieve several ailments, especially gastrointestinal disorders, however, with scant knowledge about the pharmacological basis. In the present study, an endemic S. sipylea Greek species from Lesvos Island has been characterized for phytochemical composition and biological activities, in order to give a possible scientific basis to its traditional use and to highlight a further nutraceutical interest as a source of bioactive phytochemicals and extracts. Three different fractions obtained from a methanolic extract of S. sipylea aerial parts by using ethyl acetate with 10 (S10), 20 (S20), and 50% (S50) methanol as fractionation solvents were phytochemically characterized. Moreover, their antioxidant power and cytoprotective activity in different human cell lines were evaluated. The phytochemical analysis highlighted the presence of flavonoids, iridoids, and phenolic acids in all the tested samples. Particularly, the S10 fraction mainly contained iridoids, while S20 and S50 lavandulifolioside and chlorogenic acid, respectively. The fractions also showed antioxidant properties, S10 and S20 being the most potent. When assessed in human cholangiocytes, they counteracted the cytotoxicity of the tBOOH pro-oxidant agent, by reducing ROS levels and affecting GSH antioxidant system. The present findings highlight a possible interest in S10 and S20 fractions from S. sipylea as sources of bioactive molecules and stimulate further studies in order to characterize their possible application for nutraceutical and pharmaceutical purposes.

2.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163958

RESUMO

In the present study, the phytochemical composition and bioactivities of A. maroccanus (AM) and A. radiatus (AR), two ecotypes collected in the Demnate road and Essaouira regions, respectively, were studied to highlight a pharmacological interest and to enable possible pharmaceutical development. To this end, methanolic and ethyl acetate extracts were prepared for each ecotype by fractionation; next, their phytochemical composition was evaluated by spectrophotometric and chromatographic analysis. Moreover, in line with the available evidence for Anacyclus spp. and their traditional use, a screening of bioactivities, including antioxidant, hypoglycemic, antiglycative, chelating, and antibacterial activities, was performed. The extracts were characterized by high amounts of polyphenols, tannins, and flavonoids, especially in the methanolic extracts; these samples were also enriched in carotenoids despite a lower chlorophyll content. Chlorogenic acid and rutin were the major identified compounds. The extracts also showed interesting hypoglycemic, antiglycative, and antibacterial properties, although with differences in efficacy and potency. Present results provide more scientific basis to the ethnopharmacological uses of Anacyclus spp. and suggest a further interest in AM and AR ecotypes as natural sources of bioactive compounds and/or phytocomplexes for possible pharmaceutical and nutraceutical developments.


Assuntos
Asteraceae/genética , Asteraceae/metabolismo , Compostos Fitoquímicos/análise , Antibacterianos/farmacologia , Antioxidantes/química , Asteraceae/efeitos dos fármacos , Flavonoides/análise , Testes de Sensibilidade Microbiana , Marrocos , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Polifenóis/química , Taninos
3.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885717

RESUMO

The ß-isomer of hexachlorocyclohexane (ß-HCH) is a globally widespread pollutant that embodies all the physicochemical characteristics of organochlorine pesticides, constituting an environmental risk factor for a wide range of noncommunicable diseases. Previous in vitro studies from our group disclosed the carcinogenic potential of ß-HCH, which contributes to neoplastic transformation by means of multifaceted intracellular mechanisms. Considering the positive evidence regarding the protective role of natural bioactive compounds against pollution-induced toxicity, micronutrients from olive and tomato endowed with the capability of modulating ß-HCH cellular targets were tested. For this purpose, the solution obtained from a patented food supplement (No. EP2851080A1), referred to as Tomato and Olive Bioactive Compounds (TOBC), was administered to the androgen-sensitive prostate cancer cells LNCaP and different biochemical and cellular assays were performed to evaluate its efficiency. TOBC shows a dose-dependent significant chemoprotection by contrasting ß-HCH-induced intracellular responses such as STAT3 and AhR activation, disruption of AR signaling, antiapoptotic and proliferative activity, and increase in ROS production and DNA damage. These experimental outcomes identified TOBC as a suitable functional food to be included in a diet regimen aimed at defending cells from ß-HCH negative effects, recommending the development of tailored enriched formulations for exposed individuals.


Assuntos
Compostos Fitoquímicos/farmacologia , Neoplasias da Próstata/dietoterapia , Receptores Androgênicos/genética , Fator de Transcrição STAT3/genética , Androgênios/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hexaclorocicloexano/toxicidade , Humanos , Solanum lycopersicum/química , Masculino , Micronutrientes/química , Micronutrientes/farmacologia , Olea/química , Compostos Fitoquímicos/química , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/química , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos
4.
Elife ; 102021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34517941

RESUMO

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Assuntos
Proteínas de Drosophila/metabolismo , Atividade Motora/genética , Atividade Motora/fisiologia , Poliaminas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Regulação para Baixo/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Putrescina/farmacologia , Interferência de RNA , Proteínas de Ligação a RNA/genética , Espermidina/farmacologia
5.
Cells ; 9(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252311

RESUMO

Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene ß-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. ß-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of ß-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by ß-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent.


Assuntos
Quimioprevenção/métodos , Colangiocarcinoma/tratamento farmacológico , Doxorrubicina/uso terapêutico , Sesquiterpenos Policíclicos/metabolismo , Fator de Transcrição STAT3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colangiocarcinoma/patologia , Doxorrubicina/farmacologia , Humanos , Estrutura Molecular , Oxirredução , Transdução de Sinais
6.
Molecules ; 24(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461832

RESUMO

Pomegranate peel is a natural source of phenolics, claimed to possess healing properties, among which are antioxidant and antidiabetic. In the present study, an ethyl acetate extract, obtained by Soxhlet from the peel of Dente di Cavallo DC2 pomegranate (PGE) and characterized to contain 4% w/w of ellagic acid, has been evaluated for its hypoglycemic, antiglycation, and antioxidative cytoprotective properties, in order to provide possible evidence for future nutraceutical applications. The α-amylase and α-glucosidase enzyme inhibition, interference with advanced glycation end-products (AGE) formation, and metal chelating abilities were studied. Moreover, the possible antioxidant cytoprotective properties of PGE under hyperglycemic conditions were assayed. Phenolic profile of the extract was characterized by integrated chromatographic and spectrophotometric methods. PGE resulted able to strongly inhibit the tested enzymes, especially α-glucosidase, and exerted chelating and antiglycation properties. Also, it counteracted the intracellular oxidative stress under hyperglycemic conditions, by reducing the levels of reactive oxygen species and total glutathione. Among the identified phenolics, rutin was the most abundant flavonoid (about 4 % w/w). Present results suggest PGE to be a possible remedy for hyperglycemia management and encourage further studies to exploit its promising properties.


Assuntos
Antioxidantes/química , Hipoglicemiantes/química , Fenóis/química , Punica granatum/química , Antioxidantes/farmacologia , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Glutationa/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/química , Rutina/farmacologia , alfa-Amilases/antagonistas & inibidores
7.
J Agric Food Chem ; 50(7): 2169-72, 2002 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11902974

RESUMO

Aminoethylcysteine ketimine decarboxylated dimer (simply named dimer) is a natural sulfur-containing tricyclic compound detected, until now, in human urine, bovine cerebellum, and human plasma. Recently, the antioxidant properties of this compound have been demonstrated. In this investigation, the presence of aminoethylcysteine ketimine decarboxylated dimer was identified in garlic, spinach, tomato, asparagus, aubergine, onion, pepper, and courgette. Identification of this compound in dietary vegetables was performed using gas chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. Results from GC analysis range in the order of 10(-4) micromol of dimer/g for all the tested vegetables. These results and the lack of a demonstrated biosynthetic pathway in humans might account for a dietary supply of this molecule.


Assuntos
Antioxidantes/análise , Morfolinas/análise , Verduras/química , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Dieta , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA