Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Anat ; 242(1): 91-101, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34958481

RESUMO

Aging is associated with cardiac hypertrophy and progressive decline in heart function. One of the hallmarks of cellular aging is the dysfunction of mitochondria. These organelles occupy around 1/4 to 1/3 of the cardiomyocyte volume. During cardiac aging, the removal of defective or dysfunctional mitochondria by mitophagy as well as the dynamic equilibrium between mitochondrial fusion and fission is distorted. Here, we hypothesized that these changes affect the number of mitochondria and alter their three-dimensional (3D) characteristics in aged mouse hearts. The polyamine spermidine stimulates both mitophagy and mitochondrial biogenesis, and these are associated with improved cardiac function and prolonged lifespan. Therefore, we speculated that oral spermidine administration normalizes the number of mitochondria and their 3D morphology in aged myocardium. Young (4-months old) and old (24-months old) mice, treated or not treated with spermidine, were used in this study (n = 10 each). The number of mitochondria in the left ventricles was estimated by design-based stereology using the Euler-Poincaré characteristic based on a disector at the transmission electron microscopic level. The 3D morphology of mitochondria was investigated by 3D reconstruction (using manual contour drawing) from electron microscopic z-stacks obtained by focused ion beam scanning electron microscopy. The volume of the left ventricle and cardiomyocytes were significantly increased in aged mice with or without spermidine treatment. Although the number of mitochondria was similar in young and old control mice, it was significantly increased in aged mice treated with spermidine. The interfibrillar mitochondria from old mice exhibited a lower degree of organization and a greater variation in shape and size compared to young animals. The mitochondrial alignment along the myofibrils in the spermidine-treated mice appeared more regular than in control aged mice, however, old mitochondria from animals fed spermidine also showed a greater diversity of shape and size than young mitochondria. In conclusion, mitochondria of the aged mouse left ventricle exhibited changes in number and 3D ultrastructure that is likely the structural correlate of dysfunctional mitochondrial dynamics. Spermidine treatment reduced, at least in part, these morphological changes, indicating a beneficial effect on cardiac mitochondrial alterations associated with aging.


Assuntos
Miocárdio , Espermidina , Camundongos , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Miócitos Cardíacos/metabolismo , Mitocôndrias , Suplementos Nutricionais
2.
JAMA Netw Open ; 5(5): e2213875, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35616942

RESUMO

Importance: Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective: To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants: This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions: One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures: Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results: A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance: In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration: ClinicalTrials.gov Identifier: NCT03094546.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Idoso , Animais , Biomarcadores , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Suplementos Nutricionais , Feminino , Humanos , Inflamação , Espermidina/farmacologia , Espermidina/uso terapêutico
3.
Cell Rep ; 35(2): 108985, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852843

RESUMO

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Assuntos
Envelhecimento/genética , Proteína 7 Relacionada à Autofagia/genética , Disfunção Cognitiva/genética , Suplementos Nutricionais , Proteínas Quinases/genética , Espermidina/farmacologia , Ubiquitina-Proteína Ligases/genética , Envelhecimento/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell Rep ; 35(2): 108941, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852845

RESUMO

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Lisina/análogos & derivados , Mitocôndrias/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Espermidina/farmacologia , Administração Oral , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Respiração Celular/genética , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Locomoção/fisiologia , Lisina/metabolismo , Memória/fisiologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Animais , Neurônios/metabolismo , Neurônios/patologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Espermidina/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
5.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568522

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.


Assuntos
Insuficiência Cardíaca , Animais , Estudos de Coortes , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Volume Sistólico
6.
Geroscience ; 43(2): 673-690, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33517527

RESUMO

Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.


Assuntos
Espermidina , Telômero , Envelhecimento , Animais , Autofagia , Suplementos Nutricionais , Camundongos , Espermidina/farmacologia
7.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L312-L324, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521164

RESUMO

Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.


Assuntos
Pulmão/efeitos dos fármacos , Obesidade/complicações , Obesidade/fisiopatologia , Espermidina/administração & dosagem , Ração Animal , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/efeitos dos fármacos
8.
Alzheimers Res Ther ; 11(1): 36, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039826

RESUMO

BACKGROUND: Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer's disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. METHODS: The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12 months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18 months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. DISCUSSION: The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer's disease. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03094546 . Registered 29 March 2017-retrospectively registered. PROTOCOL VERSION: Based on EA1/250/16 version 1.5.


Assuntos
Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Espermidina/administração & dosagem , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico por imagem , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos de Pesquisa
9.
Nat Commun ; 10(1): 651, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783116

RESUMO

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Flavonoides/farmacologia , Longevidade/efeitos dos fármacos , Envelhecimento/fisiologia , Angelica/química , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Flavonoides/administração & dosagem , Fatores de Transcrição GATA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Longevidade/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Medicina Tradicional do Leste Asiático , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/tratamento farmacológico , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Sirolimo/farmacologia , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética
10.
Autophagy ; 15(1): 165-168, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306826

RESUMO

Spermidine is a natural polyamine that stimulates cytoprotective macroautophagy/autophagy. External supplementation of spermidine extends lifespan and health span across species, including in yeast, nematodes, flies and mice. In humans, spermidine levels decline with aging, and a possible connection between reduced endogenous spermidine concentrations and age-related deterioration has been suggested. Recent epidemiological data support this notion, showing that an increased uptake of this polyamine with spermidine-rich food diminishes overall mortality associated with cardiovascular diseases and cancer. Here, we discuss nutritional and other possible routes to counteract the age-mediated decline of spermidine levels.


Assuntos
Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Espermidina/farmacologia , Espermidina/fisiologia , Envelhecimento/fisiologia , Animais , Autofagia/fisiologia , Humanos , Camundongos , Nematoides , Regulação para Cima/efeitos dos fármacos , Vitaminas/farmacologia , Vitaminas/fisiologia , Leveduras
11.
Cortex ; 109: 181-188, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30388439

RESUMO

INTRODUCTION: Nutritional intervention with the natural polyamine spermidine, an autophagy-enhancing agent, can prevent memory loss in aging model organisms. This is the first human study to evaluate the impact of spermidine supplementation on memory performance in older adults at risk for the development of Alzheimer's disease. METHODS: Cognitively intact participants with subjective cognitive decline (n = 30, 60-80 years of age) were included in this three-months, randomized, placebo-controlled, double-blind Phase IIa pilot trial with a spermidine-rich plant extract supplement. Effects of intervention were assessed using the behavioral mnemonic similarity task, measured at baseline and post-intervention visits. Data analysis was focused on reporting and interpreting effectiveness based on effect sizes. RESULTS: Memory performance was moderately enhanced in the spermidine group compared with placebo at the end of intervention [contrast mean = .17, 95% confidence interval (CI): -.01, .35, Cohen's d = .77, 95% CI: 0, 1.53]. Mnemonic discrimination ability improved in the spermidine-treated group with a medium effect size (mean difference = -.11, 95% CI: -.19, -.03, Cohen's d = .79, 95% CI: .01, 1.55). A similar effect was not found in the placebo-treated group (mean difference = .07, 95% CI: -.13, .27, Cohen's d = -.20, 95% CI: -.94, .54). DISCUSSION: In this pilot trial, nutritional spermidine was associated with a positive impact on memory performance in older adults with subject cognitive decline. The beneficial effect might be mediated by stimulation of neuromodulatory actions in the memory system. A follow-up Phase IIb randomized controlled trial will help validate the therapeutic potential of spermidine supplementation and delineate possible neurophysiological mechanisms of action. TRIAL REGISTRATION: Registered in ClinicalTrials.gov with the Identifier NCT02755246.


Assuntos
Disfunção Cognitiva/psicologia , Demência/psicologia , Suplementos Nutricionais , Memória/efeitos dos fármacos , Espermidina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fatores de Risco
12.
Aging (Albany NY) ; 10(1): 19-33, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29315079

RESUMO

Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.


Assuntos
Cognição/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Espermidina/farmacologia , Administração Oral , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Animais , Disfunção Cognitiva/tratamento farmacológico , Método Duplo-Cego , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Extratos Vegetais/efeitos adversos , Espermidina/administração & dosagem , Espermidina/efeitos adversos
13.
Science ; 359(6374)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371440

RESUMO

Interventions that delay aging and protect from age-associated disease are slowly approaching clinical implementation. Such interventions include caloric restriction mimetics, which are defined as agents that mimic the beneficial effects of dietary restriction while limiting its detrimental effects. One such agent, the natural polyamine spermidine, has prominent cardioprotective and neuroprotective effects and stimulates anticancer immunosurveillance in rodent models. Moreover, dietary polyamine uptake correlates with reduced cardiovascular and cancer-related mortality in human epidemiological studies. Spermidine preserves mitochondrial function, exhibits anti-inflammatory properties, and prevents stem cell senescence. Mechanistically, it shares the molecular pathways engaged by other caloric restriction mimetics: It induces protein deacetylation and depends on functional autophagy. Because spermidine is already present in daily human nutrition, clinical trials aiming at increasing the uptake of this polyamine appear feasible.


Assuntos
Envelhecimento , Autofagia/fisiologia , Restrição Calórica , Suplementos Nutricionais , Espermidina , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/efeitos dos fármacos , Transporte Biológico , Carcinogênese/metabolismo , Doenças Cardiovasculares/prevenção & controle , Humanos , Síndrome Metabólica/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Espermidina/administração & dosagem , Espermidina/metabolismo , Espermidina/farmacologia
14.
Cell ; 160(1-2): 132-44, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25542313

RESUMO

Dietary restriction (DR) without malnutrition encompasses numerous regimens with overlapping benefits including longevity and stress resistance, but unifying nutritional and molecular mechanisms remain elusive. In a mouse model of DR-mediated stress resistance, we found that sulfur amino acid (SAA) restriction increased expression of the transsulfuration pathway (TSP) enzyme cystathionine γ-lyase (CGL), resulting in increased hydrogen sulfide (H2S) production and protection from hepatic ischemia reperfusion injury. SAA supplementation, mTORC1 activation, or chemical/genetic CGL inhibition reduced H2S production and blocked DR-mediated stress resistance. In vitro, the mitochondrial protein SQR was required for H2S-mediated protection during nutrient/oxygen deprivation. Finally, TSP-dependent H2S production was observed in yeast, worm, fruit fly, and rodent models of DR-mediated longevity. Together, these data are consistent with evolutionary conservation of TSP-mediated H2S as a mediator of DR benefits with broad implications for clinical translation. PAPERFLICK:


Assuntos
Dieta , Sulfeto de Hidrogênio/metabolismo , Animais , Evolução Biológica , Caenorhabditis elegans/fisiologia , Restrição Calórica , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Rim/irrigação sanguínea , Rim/lesões , Expectativa de Vida , Fígado/irrigação sanguínea , Fígado/lesões , Masculino , Metionina/metabolismo , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão , Transdução de Sinais , Estresse Fisiológico , Transcriptoma , Leveduras/fisiologia
15.
Autophagy ; 10(11): 1879-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484097

RESUMO

Nutrient depletion, which is one of the physiological triggers of autophagy, results in the depletion of intracellular acetyl coenzyme A (AcCoA) coupled to the deacetylation of cellular proteins. We surmise that there are 3 possibilities to mimic these effects, namely (i) the depletion of cytosolic AcCoA by interfering with its biosynthesis, (ii) the inhibition of acetyltransferases, which are enzymes that transfer acetyl groups from AcCoA to other molecules, mostly leucine residues in cellular proteins, or (iii) the stimulation of deacetylases, which catalyze the removal of acetyl groups from leucine residues. There are several examples of rather nontoxic natural compounds that act as AcCoA depleting agents (e.g., hydroxycitrate), acetyltransferase inhibitors (e.g., anacardic acid, curcumin, epigallocatechin-3-gallate, garcinol, spermidine) or deacetylase activators (e.g., nicotinamide, resveratrol), and that are highly efficient inducers of autophagy in vitro and in vivo, in rodents. Another common characteristic of these agents is their capacity to reduce aging-associated diseases and to confer protective responses against ischemia-induced organ damage. Hence, we classify them as "caloric restriction mimetics" (CRM). Here, we speculate that CRM may mediate their broad health-improving effects by triggering the same molecular pathways that usually are elicited by long-term caloric restriction or short-term starvation and that imply the induction of autophagy as an obligatory event conferring organismal, organ- or cytoprotection.


Assuntos
Autofagia/efeitos dos fármacos , Restrição Calórica , Acetilcoenzima A/química , Ácidos Anacárdicos/química , Animais , Catálise , Catequina/análogos & derivados , Catequina/química , Curcumina/química , Privação de Alimentos , Humanos , Leucina/química , Camundongos , Modelos Animais , Niacinamida/química , Extratos Vegetais/química , Resveratrol , Espermidina/química , Inanição , Estilbenos/química , Terpenos/química
16.
Cell Cycle ; 13(12): 1987-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24769862

RESUMO

Epidemiological studies and clinical trials revealed that chronic consumption coffee is associated with the inhibition of several metabolic diseases as well as reduction in overall and cause-specific mortality. We show that both natural and decaffeinated brands of coffee similarly rapidly trigger autophagy in mice. One to 4 h after coffee consumption, we observed an increase in autophagic flux in all investigated organs (liver, muscle, heart) in vivo, as indicated by the increased lipidation of LC3B and the reduction of the abundance of the autophagic substrate sequestosome 1 (p62/SQSTM1). These changes were accompanied by the inhibition of the enzymatic activity of mammalian target of rapamycin complex 1 (mTORC1), leading to the reduced phosphorylation of p70(S6K), as well as by the global deacetylation of cellular proteins detectable by immunoblot. Immunohistochemical analyses of transgenic mice expressing a GFP-LC3B fusion protein confirmed the coffee-induced relocation of LC3B to autophagosomes, as well as general protein deacetylation. Altogether, these results indicate that coffee triggers 2 phenomena that are also induced by nutrient depletion, namely a reduction of protein acetylation coupled to an increase in autophagy. We speculate that polyphenols contained in coffee promote health by stimulating autophagy.


Assuntos
Autofagia , Café/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Feminino , Fígado/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fagossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo
17.
Nat Med ; 17(9): 1076-85, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857651

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1ß (PGC-1α or PGC-1ß, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1ß expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.


Assuntos
Cardiomiopatias/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Mitocôndrias/fisiologia , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Cardiomiopatias/etiologia , Primers do DNA/genética , DNA Complementar/genética , DNA Mitocondrial/genética , Ecocardiografia , Dosagem de Genes , Lipase/genética , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/fisiologia , Oxirredução , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA