Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biomed Res Int ; 2022: 8170318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483631

RESUMO

Transfersomes (TFS) are the promising carriers for transdermal delivery of various low and high molecular weight drugs, owing to their self-regulating and self-optimizing nature. Herein, we report synthesis and characterization of TFS loaded with meloxicam (MLX), an NSAID, and dexamethasone (DEX), a steroid, for simultaneous transdermal delivery. The different formulations of TFS containing varying amounts of lecithin, Span 80, and Tween 80 (TFS-1 to TFS-6) were successfully prepared by thin-film hydration method. The size of ranged between 248 and 273 nm, zeta potential values covering from -62.6 to -69.5 mV, polydispersity index (PDI) values in between 0.329 and 0.526, and entrapment efficiency of MLX and DEX ranged between 63-96% and 48-81%, respectively. Release experiments at pH 7.4 demonstrated higher cumulative drug release attained with Tween 80 compared to Span 80-based TFS. The scanning electron microscopy (SEM) of selected formulations -1 and TFS-3 revealed spherical shape of vesicles. Furthermore, three optimized transfersomal formulations (based on entrapment efficiency, TFS-1, TFS-3, and TFS-5) were incorporated into carbopol-940 gels coded as TF-G1, TF-G3, and TF-G5. These transfersomal gels were subjected to pH, spreadability, viscosity, homogeneity, skin irritation, in vitro drug release, and ex vivo skin permeation studies, and the results were compared with plain (nontransfersomal) gel having MLX and DEX. TFS released 71.72% to 81.87% MLX in 12 h; whereas, DEX release was quantified as 74.72% to 83.72% in same time. Nevertheless, TF-based gels showed slower drug release; 51.54% to 59.60% for MLX and 48.98% to 61.23% for DEX. The TF-G systems showed 85.87% permeation of MLX (TF-G1), 68.15% (TF-G3), and 68.94% (TF-G5); whereas, 78.59%, 70.54%, and 75.97% of DEX was permeated by TF-G1, TF-G3, and TF-G5, respectively. Kinetic modeling of release and permeation data indicated to follow Korsmeyer-Peppas model showing diffusion diffusion-based drug moment. Conversely, plain gel influx was found mere 26.18% and 22.94% for MLX and DEX, respectively. These results suggest that TF-G loaded with MLX and DEX can be proposed as an alternate drug carriers for improved transdermal flux that will certainly increase therapeutic outcomes.


Assuntos
Dexametasona , Lecitinas , Meloxicam
2.
Drug Deliv ; 29(1): 600-612, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35174738

RESUMO

In this article, formulation studies for terbinafine hydrochloride nanoemulsions, prepared by high-energy ultrasonication technique, are described. Pseudo-ternary phase diagram was constructed in order to find out the optimal ratios of oil and surfactant/co-solvent mixture for nanoemulsion production. Clove and olive oils were selected as oil phase. Based on the droplet size evaluation, maximum nanoemulsion region were determined for formulation development. Further characterization included polydispersity index (PDI), zeta potential, Fourier transform infrared (FT-IR) spectroscopy, morphology, pH, viscosity, refractive index, ex vivo skin permeation, skin irritation, and histopathological examination. Droplet sizes of optimized formulations were in colloidal range. PDI values below 0.35 indicated considerably homogeneous nanoemulsions. Zeta potential values were from 13.2 to 18.1 mV indicating good stability, which was also confirmed by dispersion stability studies. Ex vivo permeation studies revealed almost total skin permeation of terbinafine hydrochloride from the nanoemulsions (96-98%) in 6 hours whereas commercial product reached only 57% permeation at the same time. Maximum drug amounts were seen in epidermis and dermis layers. Skin irritation and histopathological examination demonstrated dermatologically safe formulations. In conclusion, olive oil and clove oil-based nanoemulsion systems have potential to serve as promising carriers for topical terbinafine hydrochloride delivery.


Assuntos
Antifúngicos/farmacologia , Óleo de Cravo/química , Nanopartículas/química , Azeite de Oliva/química , Terbinafina/farmacologia , Administração Tópica , Animais , Antifúngicos/administração & dosagem , Antifúngicos/efeitos adversos , Antifúngicos/farmacocinética , Química Farmacêutica , Portadores de Fármacos , Emulsões/química , Concentração de Íons de Hidrogênio , Camundongos , Tamanho da Partícula , Absorção Cutânea/efeitos dos fármacos , Solubilidade , Propriedades de Superfície , Terbinafina/administração & dosagem , Terbinafina/efeitos adversos , Terbinafina/farmacocinética , Viscosidade
3.
Biomed Pharmacother ; 146: 112550, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959116

RESUMO

Coronavirus is a family of viruses that can cause diseases such as the common cold, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). The universal outbreak of coronavirus disease 2019 (COVID-19) caused by SARS coronaviruses 2 (SARS-CoV-2) has become a global pandemic. The ß-Coronaviruses, which caused SARS-CoV-2 (COVID-19), have spread in more than 213 countries, infected over 81 million people, and caused more than 1.79 million deaths. COVID-19 symptoms vary from mild fever, flu to severe pneumonia in severely ill patients. Difficult breathing, acute respiratory distress syndrome (ARDS), acute kidney disease, liver damage, and multi-organ failure ultimately lead to death. Researchers are working on different pre-clinical and clinical trials to prevent this deadly pandemic by developing new vaccines. Along with vaccines, therapeutic intervention is an integral part of healthcare response to address the ongoing threat posed by COVID-19. Despite the global efforts to understand and fight against COVID-19, many challenges need to be addressed. This article summarizes the current pandemic, different strains of SARS-CoV-2, etiology, complexities, surviving medications of COVID-19, and so far, vaccination for the treatment of COVID-19.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/genética , Variação Genética/genética , SARS-CoV-2/genética , Vacinação/tendências , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Antivirais/administração & dosagem , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Surtos de Doenças/prevenção & controle , Humanos , Medicina Tradicional Chinesa/tendências , Vacinação/métodos , Tratamento Farmacológico da COVID-19
4.
Front Pharmacol ; 12: 791049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145403

RESUMO

Health consciousness and increased knowledge about the side effects of synthetic drugs have enhanced interest in traditional medicines. Medicinal plants offer cures for various diseases, leading to improved living standards. This has brought ethnomedicinal studies into the spotlight and increased demand for herb-based medicines. Citrullus colocynthis is an herbaceous plant containing an abundance of nutrients that play a key role in the improvement of wellbeing. C. colocynthis has many biological properties, such as antioxidative, hypoglycemic, antibacterial, anti-cancerous, anti-inflammatory, analgesic, gastrointestinal tract, reproduction, protection, anti-microbial, antidiabetic, hypolipidemic, antineoplastic, profibrinolytic, anti-allergic, pesticidal, and immune-stimulatory. There are numerous bioactive compounds like cucurbitacin, flavonoids, and polyphenols in C. colocynthis that give it medicinal properties. Herein, we have extensively compiled, reviewed, and analyzed significant information on C. colocynthhis from the best published available evidence in PubMed, Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, and Google Scholar, etc. Scientific literature evidenced that owing to the bioactive constituents, including cucurbitacin, polyphenols, flavonoids, and other potent molecules, C. colocynthis has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans and animals. So, the primary purpose of this comprehensive review is to provide an overview of the findings of positive impacts and risks of C. colocynthis consumption on human health, especially in poultry and veterinary fields. In the future, this narrative article will be aware of discoveries about the potential of this promising natural fruit and its bioactive compounds as the best nutraceuticals and therapeutic drugs in veterinary and human medicine.

5.
Int J Pharm ; 581: 119275, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32229283

RESUMO

Lipid polymer hybrid nanoparticles (LPHNPs) have been merged as potential nanocarriers for treatment of cancer. In the present study, LPHNPs loaded with Sorafenib (SFN) were prepared with PLGA, Lecithin and DSPE-PEG 2000 by using the bulk nanoprecipitation and microfluidic (MF) co-flow nanoprecipitation techniques. Herein, a glass capillary microfluidic device was primed to optimize the LPHNPs and compared to the bulk nanoprecipitation method. The morphological analysis of prepared LPHNPs revealed the well-defined spherical nano-sized particles in bulk nanoprecipitation method. Whereas, core shell morphology was observed in the MF method. The formulation prepared by the MF method (MF1-MF3) indicated relatively higher % EE (95.0%, 93.8% and 88.7%) and controlled release of the SFN from the particles as compared to the LPHNPs obtained by the bulk nanoprecipitation method. However, the release of SFN from all LPHNP formulation followed Higuchi model (R2 = 0.9901-0.9389) with Fickian diffusion mechanism. Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and powder X-rays diffraction (pXRD) studies depicted the compatibility of SFN with all the structural components. In addition, the colloidal stability, in vitro cytotoxicity and cell growth inhibition studies of LPHNPs also demonstrated stability in biological media, biocompatibility and safety with enhanced anti-proliferative effects than the free SFN in breast cancer and prostate cancer cells. In conclusion, LPHNPs provided a prospective platform for the cancer chemotherapy and substantially improved the knowledge of fabrication and optimization of the hybrid nanoparticles.


Assuntos
Antineoplásicos/farmacocinética , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Sorafenibe/farmacocinética , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lecitinas/química , Técnicas Analíticas Microfluídicas , Neoplasias/patologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sorafenibe/administração & dosagem
6.
Int J Nanomedicine ; 12: 8325-8336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29200845

RESUMO

Thermoresponsive drug delivery systems are designed for the controlled and targeted release of therapeutic payload. These systems exploit hyperthermic temperatures (>39°C), which may be applied by some external means or due to an encountered symptom in inflammatory diseases such as cancer and arthritis. The objective of this paper was to provide some solid evidence in support of the hypothesis that solid lipid nanoparticles (SLNs) can be used for thermoresponsive targeting by undergoing solid-liquid phase transition at their melting point (MP). Thermoresponsive lipid mixtures were prepared by mixing solid and liquid natural fatty acids, and their MP was measured by differential scanning calorimetry (DSC). SLNs (MP 39°C) containing 5-fluorouracil (5-FU) were synthesized by hot melt encapsulation method, and were found to have spherical shape (transmission electron microscopy studies), desirable size (<200 nm), and enhanced physicochemical stability (Fourier transform infrared spectroscopy analysis). We observed a sustained release pattern (22%-34%) at 37°C (5 hours). On the other hand, >90% drug was released at 39°C after 5 hours, suggesting that the SLNs show thermoresponsive drug release, thus confirming our hypothesis. Drug release from SLNs at 39°C was similar to oleic acid and linoleic acid nanoemulsions used in this study, which further confirmed that thermoresponsive drug release is due to solid-liquid phase transition. Next, a differential pulse voltammetry-based electrochemical chemical detection method was developed for quick and real-time analysis of 5-FU release, which also confirmed thermoresponsive drug release behavior of SLNs. Blank SLNs were found to be biocompatible with human gingival fibroblast cells, although 5-FU-loaded SLNs showed some cytotoxicity after 24 hours. 5-FU-loaded SLNs showed thermoresponsive cytotoxicity to breast cancer cells (MDA-MB-231) as cytotoxicity was higher at 39°C (cell viability 72%-78%) compared to 37°C (cell viability >90%) within 1 hour. In conclusion, this study presents SLNs as a safe, simple, and effective platform for thermoresponsive targeting.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fluoruracila/administração & dosagem , Lipídeos/química , Nanopartículas/química , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Técnicas Eletroquímicas , Ácidos Graxos/química , Fluoruracila/química , Fluoruracila/farmacocinética , Humanos , Hipertermia Induzida/métodos , Microscopia Eletrônica de Transmissão , Nanopartículas/uso terapêutico , Transição de Fase , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
7.
AAPS PharmSciTech ; 18(5): 1810-1822, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27830514

RESUMO

The current study aimed to develop novel pH independent microparticles loaded with ropinirole (ROP) for sustained drug release. Eudragit RS 100 was used as release retardant and microparticles were fabricated by oil-in-oil emulsion solvent evaporation method. A three-factor three-level Box-Behnken design using Design-Expert software was employed to optimize formulation variables. Ropinirole loaded microparticles were evaluated with respect to morphology, particle size, encapsulation efficiency, and in vitro release profile. Optical microscopy and SEM micrographs indicated spherical shape with smooth surface and well-defined boundary. The particle size was in the range of 98.86 to 236.29 µm, being significantly increased with increasing polymer concentration. Higher polymer load also increased the thickness of internal polymer network, which led to reduced drug loss and higher entrapment efficiency (89%). The cumulative in vitro release was found to be in the range of 54.96 to 99.36% during the release studies (12 h) following zero order release kinetics and non-Fickian diffusion pattern. The developed microparticles have the potential to sustain the release of ropinirole, which may lead to a reduction in its adverse effects and improved management of Parkinson's disease.


Assuntos
Resinas Acrílicas/síntese química , Indóis/síntese química , Microesferas , Tamanho da Partícula , Resinas Acrílicas/análise , Preparações de Ação Retardada/análise , Preparações de Ação Retardada/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Indóis/análise , Difração de Raios X/métodos
8.
Pak J Pharm Sci ; 29(5): 1541-1544, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27731810

RESUMO

The present study demonstrates the biological study of Ficus carica fruit. Methanolic extract of plant fruit was prepared and evaporated under reduced pressure by rota vapor and n- hexane, Chloroform, ethyl acetate and n-butanol soluble fractions were prepared separately from crude methanolic extract. These fractions were then screened for acetyl cholinesterase, butryl cholinesterase and lipoxygenase activities. n-butanol soluble fraction showed significant antiacetylcholinesterase activity (78.55±0.76%) with IC50 of 55.8±0.37µg/ml, ethyl acetate soluble fraction showed significant anti-butrylcholinesterase activity (70.35±0.85%) with IC50 of 276.5±0.64µg/ml and significant antilipoxygenase activity was shown by ethyl acetate soluble fraction (62.52±0.26%) with IC50 of 380±0.08µg/ml.


Assuntos
Inibidores da Colinesterase/farmacologia , Ficus/química , Inibidores de Lipoxigenase/farmacologia , Fracionamento Químico , Inibidores da Colinesterase/isolamento & purificação , Frutas , Inibidores de Lipoxigenase/isolamento & purificação , Fitoterapia , Plantas Medicinais , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA