Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(5): 3870-3909, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37548598

RESUMO

Dietary supplements are legally considered foods despite frequently including medicinal plants as ingredients. Currently, the consumption of herbal dietary supplements, also known as plant food supplements (PFS), is increasing worldwide and some raw botanicals, highly demanded due to their popularity, extensive use, and/or well-established pharmacological effects, have been attaining high prices in the international markets. Therefore, botanical adulteration for profit increase can occur along the whole PFS industry chain, from raw botanicals to plant extracts, until final PFS. Besides the substitution of high-value species, unintentional mislabeling can happen in morphologically similar species. Both cases represent a health risk for consumers, prompting the development of numerous works to access botanical adulterations in PFS. Among different approaches proposed for this purpose, mass spectrometry (MS)-based techniques have often been reported as the most promising, particularly when hyphenated with chromatographic techniques. Thus, this review aims at describing an overview of the developments in this field, focusing on the applications of MS-based techniques to targeted and untargeted analysis to detect botanical adulterations in plant materials, extracts, and PFS.


Assuntos
Suplementos Nutricionais , Plantas Medicinais , Espectrometria de Massas/métodos , Contaminação de Medicamentos
2.
Clin Rev Allergy Immunol ; 62(1): 37-63, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32876924

RESUMO

This review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Alérgenos/química , Animais , Hipersensibilidade Alimentar/etiologia , Humanos , Camundongos , Proteínas de Plantas , Pólen
3.
Food Chem ; 366: 130621, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314927

RESUMO

Cynara scolymus L., known as globe artichoke, is a medicinal plant widely used in plant food supplements (PFS) and herbal infusions due to its beneficial health properties. The high demand for artichoke-containing products can lead to adulteration practices. In this work, a real-time polymerase chain reaction (PCR) system coupled to high-resolution melting (HRM) analysis was proposed to differentiate C. scolymus from other Cynara species. Hence, a Cynara-specific real-time PCR assay was successfully developed with high analytical performance, achieving a sensitivity of 0.4 pg of globe artichoke DNA. HRM analysis enabled the discrimination of C. scolymus, with a high level of confidence (>98%), corroborating sequencing data. Application results to artichoke-containing PFS and mixed herbal infusions allowed confirming the presence of C. scolymus in 38% of the samples, suggesting the substitution/mislabelling of globe artichoke in 2 samples and the need for further efforts to increase DNA amplifiability of PFS.


Assuntos
Cynara scolymus , Cynara , Cynara/genética , Cynara scolymus/genética
4.
Methods Mol Biol ; 2264: 55-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33263903

RESUMO

High-resolution melting (HRM) analysis is a cost-effective, specific, and rapid tool that allows distinguishing genetically related plants and other organisms based on the detection of small nucleotide variations, which are recognized from melting properties of the double-stranded DNA. It has been widely applied in several areas of research and diagnostics, including botanical authentication of several food commodities and herbal products. Generally, it consists of the main steps: (1) in silico sequence analysis and primer design; (2) DNA extraction from plant material; (3) amplification by real-time PCR with an enhanced fluorescent dye targeting a specific DNA barcode or other regions of taxonomic interest (100-200 bp); (4) melting curve analysis; and (5) statistical data analysis using a specific HRM software. This chapter presents an overview of HRM analysis and application, followed by the detailed description of all the required reagents, instruments, and protocols for the successful and easy implementation of a HRM method to differentiate closely related plant species.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/análise , DNA de Plantas/genética , Análise de Alimentos/métodos , Proteínas de Plantas/genética , Plantas Medicinais/genética , Reação em Cadeia da Polimerase/métodos , DNA de Plantas/isolamento & purificação , Plantas Medicinais/classificação , Especificidade da Espécie
5.
Compr Rev Food Sci Food Saf ; 19(3): 1080-1109, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-33331682

RESUMO

Herbal products, such as dietary supplements, have become a subject of increasing global importance for their health benefits and economic considerations. However, they have also been targets of adulteration practices, being the accurate identification of botanicals in herbal products of utmost importance to protect the health and expectations of consumers. Particularly, in the case of dietary supplements, which can have different types of formulations, the identification of plant material used in their production is often a research challenge. DNA-based techniques have played a crucial role on the development of a wide range of tools for the authentication of herbal products. Therefore, this review intends to describe their main progresses, critically discussing their advantages and drawbacks when applied to authenticate herbal products, focusing on dietary supplements. DNA barcoding is particularly emphasized because it has provided the highest number of applications, followed by the advances on high-resolution melting analysis combined with DNA barcodes. A special emphasis is also given to the promising approaches relying on DNA metabarcoding and isothermal amplification.


Assuntos
Suplementos Nutricionais/normas , Plantas Medicinais/classificação , Código de Barras de DNA Taxonômico/métodos , DNA de Plantas , Contaminação de Medicamentos , Plantas Medicinais/genética
6.
Foods ; 9(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899672

RESUMO

Ginkgo biloba is a widely used medicinal plant. Due to its potential therapeutic effects, it is an ingredient in several herbal products, such as plant infusions and plant food supplements (PFS). Currently, ginkgo is one of the most popular botanicals used in PFS. Due to their popularity and high cost, ginkgo-containing products are prone to be fraudulently substituted by other plant species. Therefore, this work aimed at developing a method for G. biloba detection and quantification. A new internal transcribe spacer (ITS) marker was identified, allowing the development of a ginkgo-specific real-time polymerase chain reaction (PCR) assay targeting the ITS region, with high specificity and sensitivity, down to 0.02 pg of DNA. Additionally, a normalized real-time PCR approach using the delta cycle quantification (ΔCq) method was proposed for the effective quantification of ginkgo in plant mixtures. The method exhibited high performance parameters, namely PCR efficiency, coefficient of correlation and covered dynamic range (50-0.01%), achieving limits of detection and quantification of 0.01% (w/w) of ginkgo in tea plant (Camellia sinensis). The quantitative approach was successfully validated with blind mixtures and further applied to commercial ginkgo-containing herbal infusions. The estimated ginkgo contents of plant mixture samples suggest adulterations due to reduction or almost elimination of ginkgo. In this work, useful and robust tools were proposed to detect/quantify ginkgo in herbal products, which suggests the need for a more effective and stricter control of such products.

7.
PLoS One ; 12(2): e0170281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28151972

RESUMO

Pilocarpus microphyllus Stapf ex Wardleworth (jaborandi, Rutaceae) is one of the most important Brazilian medicinal species owing to its content of pilocarpine (PIL), an alkaloid used for treating glaucoma and xerostomia. This species contains another alkaloid, epiisopiloturine (EPI), which has demonstrated effectiveness against schistosomiasis. The aim of this work was to assess seasonal changes of PIL and EPI in three populations of cultivated P. microphyllus from northeastern Brazil over one year, including the dry and rainy seasons. Alkaloid profiles were correlated to phenotypic and genetic patterns in the morphological and molecular characterizations. PIL was the primary alkaloid and its levels differed among populations in all months except September. The S01 population (green line) showed an especially high PIL content compared to populations S02 and S03 (traditional line), which had similar alkaloid contents. PIL content gradually decreased in the three populations in the rainy season.EPI content was significantly different between the green line (S01) and the traditional line (S02 and S03).S01 had a significantly lower EPI content in all months, demonstrating that it was not the best source for EPI extraction. Inter simple sequence repeat (ISSR) markers and morphological analyses clearly separated S01 from S02 and S03, in agreement with the alkaloid results. This study shows the first correlation between the chemical, morphological, and molecular markers of P. microphyllus and highlights the potential benefits of a multidisciplinary research approach aimed at supporting both industry and conservation of natural resources.


Assuntos
Alcaloides/análise , Pilocarpus/química , Plantas Medicinais/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/análise , Brasil , DNA de Plantas/genética , Genética Populacional , Imidazóis/análise , Repetições de Microssatélites , Pilocarpina/análise , Pilocarpus/anatomia & histologia , Pilocarpus/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/genética , Plantas Medicinais/anatomia & histologia , Plantas Medicinais/genética , Estações do Ano
8.
Mol Cell Probes ; 29(6): 473-478, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26079045

RESUMO

The consumption of plant food supplements (PFS) has been growing globally, with an increase of misleading labeling and fraudulent practices also being reported. Recently, the use of molecular biology techniques has been proposed to detect botanical adulterations, one of the possible frauds in PFS. However, difficulties in recovering DNA from some PFS samples have been described. Aiming at using DNA-based methods for the unequivocal identification of plant species in PFS, adequate DNA isolation is required. However, PFS often contain pharmaceutical excipients known to have adsorbent properties that might interfere with DNA extraction. Thus, the aim of this work was to assess the effect of different excipients (talc, silica, iron oxide and titanium dioxide) on the recovery/amplification of DNA. For that purpose, known amounts of template maize DNA were spiked either to PFS or to model mixtures of excipients and quantified by real-time PCR. The tested excipients evidenced clear adsorption phenomena that justify the hampering effect on DNA extraction from PFS. The use of either 10% talc or 0.5% dyes completely adsorbed DNA, resulting in negative PCR amplifications. For the first time, pharmaceutical excipients were shown to affect DNA extraction explaining the inability of recovering DNA from some PFS samples in previous studies.


Assuntos
DNA de Plantas/análise , DNA de Plantas/isolamento & purificação , Suplementos Nutricionais/análise , Excipientes/química , Adsorção , Compostos Férricos/química , Contaminação de Alimentos/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Dióxido de Silício/química , Talco/química , Titânio/química , Zea mays/genética
9.
J Agric Food Chem ; 55(17): 7124-30, 2007 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-17658824

RESUMO

In this study, the structural features and ripening-related changes that occur in the arabinan-rich pectic polysaccharides highly enmeshed in the cellulosic matrix of the olive pulp fruit were evaluated. These pectic polysaccharides, obtained from two consecutive harvests at green, cherry, and black ripening stages, account for 11-19% of the total pectic polysaccharides found in the olive pulp cell walls and were previously shown to occur as calcium chelating dimers. On the basis of the 13C NMR, (1H, 13C) gHSQC, 2D COSYPR, and (1H,13C) gHMBC carbon and proton resonances of the variously linked arabinosyl residues, we propose a tentative structure. This structure is particularly characterized by T-beta-Araf (1-->5)-linked to (1-->3,5)-Araf residues and by the occurrence of branched and linear blocks in the arabinan backbone. Methylation analysis showed that these pectic polysaccharides of black olives have more arabinan side chains, which were shorter (less (1-->5)-Araf), highly branched (more (1-->3,5)-Araf), and with shorter side chains (fewer (1-->3)-Araf) than those of green and cherry olives. Quantitative 13C NMR data indicated that these modifications involved the disappearance of the characteristic terminally linked beta-Araf residue of the arabinans. This odd feature can be used as a diagnostic tool in the evaluation of the stage of ripening of this fruit, as well as a marker for the presence of olive pulp in matrices containing pectic polysaccharides samples.


Assuntos
Frutas/química , Frutas/crescimento & desenvolvimento , Olea/química , Pectinas/química , Polissacarídeos/química , Parede Celular/química , Espectroscopia de Ressonância Magnética , Metilação , Polissacarídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA