Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9374, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653777

RESUMO

Colletotrichum is an important plant pathogenic fungi that causes anthracnose/-twister disease in onion. This disease was prevalent in the monsoon season from August to November months and the symptoms were observed in most of the fields. This study aimed to investigate the pathogenicity and cumulative effect, if any of Colletotrichum gloeosporioides and Fusarium acutatum. The pot experiment was laid out to identify the cause responsible for inciting anthracnose-twister disease, whether the Colletotrichum or Fusarium or both, or the interaction of pathogens and GA3. The results of the pathogenicity test confirmed that C. gloeosporioides and F. acutatum are both pathogenic. C. gloeosporioides caused twisting symptoms independently, while F.acutatum independently caused only neck elongation. The independent application of GA3 did not produce any symptoms, however, increased the plant height. The combined treatment of C. gloeosporioides and F. acutatum caused twisting, which enhanced upon interaction with GA3 application giving synergistic effect. The acervuli were found in lesions infected with C. gloeosporioides after 8 days of inoculation on the neck and leaf blades. Symptoms were not observed in untreated control plants. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants.


Assuntos
Colletotrichum , Fusarium , Cebolas , Doenças das Plantas , Colletotrichum/patogenicidade , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Cebolas/microbiologia
2.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566021

RESUMO

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Assuntos
Irrigação Agrícola , Cebolas , Irrigação Agrícola/métodos , Índia , Fazendas , Produtos Agrícolas
3.
Sci Rep ; 13(1): 7934, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193780

RESUMO

Onion thrips, Thrips tabaci Lindeman, an economically important onion pest in India, poses a severe threat to the domestic and export supply of onions. Therefore, it is important to study the distribution of this pest in order to assess the possible crop loss, which it may inflict if not managed in time. In this study, MaxEnt was used to analyze the potential distribution of T. tabaci in India and predict the changes in the suitable areas for onion thrips under two scenarios, SSP126 and SSP585. The area under the receiver operating characteristic curve values of 0.993 and 0.989 for training and testing demonstrated excellent model accuracy. The true skill statistic value of 0.944 and 0.921, and the continuous Boyce index of 0.964 and 0.889 for training and testing, also showed higher model accuracy. Annual Mean Temperature (bio1), Annual Precipitation (bio12) and Precipitation Seasonality (bio15) are the main variables that determined the potential distribution of T. tabaci, with the suitable range of 22-28 °C; 300-1000 mm and 70-160, respectively. T. tabaci is distributed mainly in India's central and southern states, with 1.17 × 106 km2, covering 36.4% of land area under the current scenario. Multimodal ensembles show that under a low emission scenario (SSP126), low, moderate and optimum suitable areas of T. tabaci is likely to increase, while highly suitable areas would decrease by 17.4% in 2050 20.9% in 2070. Whereas, under the high emission scenario (SSP585), the high suitability is likely to contract by 24.2% and 51.7% for 2050 and 2070, respectively. According to the prediction of the BCC-CSM2-MR, CanESM5, CNRM-CM6-1 and MIROC6 model, the highly suitable area for T. tabaci would likely contract under both SSP126 and SSP585. This study detailed the potential future habitable area for T. tabaci in India, which could help monitor and devise efficient management strategies for this destructive pest.


Assuntos
Tisanópteros , Animais , Cebolas , Mudança Climática , Temperatura , Índia
4.
Pathogens ; 12(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678477

RESUMO

Garlic (Allium sativum L.) is a clonally propagated bulbous crop and can be infected by several viruses under field conditions. A virus complex reduces garlic yield and deteriorates the quality of the produce. In the present study, we aimed to eliminate Onion yellow dwarf virus (OYDV), Garlic common latent virus (GCLV), Shallot latent virus (SLV), and Allexiviruses from the infected crop using combination of meristem culture, thermotherapy, and chemotherapy. In this study, seven different treatments, namely shoot meristem culture, thermotherapy direct culture, chemotherapy direct culture, chemotherapy + meristem culture, thermotherapy + meristem culture, thermotherapy + chemotherapy direct culture, and thermotherapy + chemotherapy + meristem culture (TCMC), were used. Multiplex polymerase chain reaction (PCR) was employed to detect virus elimination, which revealed the percentage of virus-free plants was between 65 and 100%, 55 and 100%, and 13 and 100% in the case of GCLV, SLV, and OYDV, respectively. The in vitro regeneration efficiency was between 66.06 and 98.98%. However, the elimination of Allexiviruses could not be achieved. TCMC was the most effective treatment for eliminating GCLV, SLV, and OYDV from garlic, with 66.06% plant regeneration efficiency. The viral titre of the Allexivirus under all the treatments was monitored using real-time PCR, and the lowest viral load was observed in the TCMC treatment. The present study is the first to report the complete removal of GCLV, SLV, and OYDV from Indian red garlic with the application of thermotherapy coupled with chemotherapy and shoot meristem culture.

5.
PLoS One ; 15(8): e0237457, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32780764

RESUMO

Onion (Allium cepa L.) is an important vegetable crop widely grown for diverse culinary and nutraceutical properties. Being a shallow-rooted plant, it is prone to drought. In the present study, transcriptome sequencing of drought-tolerant (1656) and drought-sensitive (1627) onion genotypes was performed to elucidate the molecular basis of differential response to drought stress. A total of 123206 and 139252 transcripts (average transcript length: 690 bases) were generated after assembly for 1656 and 1627, respectively. Differential gene expression analyses revealed upregulation and downregulation of 1189 and 1180 genes, respectively, in 1656, whereas in 1627, upregulation and downregulation of 872 and 1292 genes, respectively, was observed. Genes encoding transcription factors, cytochrome P450, membrane transporters, and flavonoids, and those related to carbohydrate metabolism were found to exhibit a differential expression behavior in the tolerant and susceptible genotypes. The information generated can facilitate a better understanding of molecular mechanisms underlying drought response in onion.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Cebolas/genética , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica/métodos , Genótipo , Proteínas de Membrana Transportadoras/genética , RNA de Plantas/química , RNA de Plantas/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA