Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 165: 107383, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657357

RESUMO

A virtual anatomical model of a patient can be a valuable tool for enhancing clinical tasks such as workflow automation, patient-specific X-ray dose optimization, markerless tracking, positioning, and navigation assistance in image-guided interventions. For these tasks, it is highly desirable that the patient's surface and internal organs are of high quality for any pose and shape estimate. At present, the majority of statistical shape models (SSMs) are restricted to a small number of organs or bones or do not adequately represent the general population. To address this, we propose a deformable human shape and pose model that combines skin, internal organs, and bones, learned from CT images. By modeling the statistical variations in a pose-normalized space using probabilistic PCA while also preserving joint kinematics, our approach offers a holistic representation of the body that can be beneficial for automation in various medical applications. In an interventional setup, our model could, for example, facilitate automatic system/patient positioning, organ-specific iso-centering, automated collimation or collision prediction. We assessed our model's performance on a registered dataset, utilizing the unified shape space, and noted an average error of 3.6 mm for bones and 8.8 mm for organs. By utilizing solely skin surface data or patient metadata like height and weight, we find that the overall combined error for bone-organ measurement is 8.68 mm and 8.11 mm, respectively. To further verify our findings, we conducted additional tests on publicly available datasets with multi-part segmentations, which confirmed the effectiveness of our model. In the diverse TotalSegmentator dataset, the errors for bones and organs are observed to be 5.10mm and 8.72mm, respectively. Our work shows that anatomically parameterized statistical shape models can be created accurately and in a computationally efficient manner. The proposed approach enables the construction of shape models that can be directly integrated into to various medical applications.


Assuntos
Osso e Ossos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Osso e Ossos/diagnóstico por imagem , Automação , Modelos Estatísticos , Imageamento Tridimensional/métodos
2.
J Microsc ; 287(2): 81-92, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35638174

RESUMO

High-resolution X-ray microscopy (XRM) is gaining interest for biological investigations of extremely small-scale structures. XRM imaging of bones in living mice could provide new insights into the emergence and treatment of osteoporosis by observing osteocyte lacunae, which are holes in the bone of few micrometres in size. Imaging living animals at that resolution, however, is extremely challenging and requires very sophisticated data processing converting the raw XRM detector output into reconstructed images. This paper presents an open-source, differentiable reconstruction pipeline for XRM data which analytically computes the final image from the raw measurements. In contrast to most proprietary reconstruction software, it offers the user full control over each processing step and, additionally, makes the entire pipeline deep learning compatible by ensuring differentiability. This allows fitting trainable modules both before and after the actual reconstruction step in a purely data-driven way using the gradient-based optimizers of common deep learning frameworks. The value of such differentiability is demonstrated by calibrating the parameters of a simple cupping correction module operating on the raw projection images using only a self-supervisory quality metric based on the reconstructed volume and no further calibration measurements. The retrospective calibration directly improves image quality as it avoids cupping artefacts and decreases the difference in grey values between outer and inner bone by 68-94%. Furthermore, it makes the reconstruction process entirely independent of the XRM manufacturer and paves the way to explore modern deep learning reconstruction methods for arbitrary XRM and, potentially, other flat-panel computed tomography systems. This exemplifies how differentiable reconstruction can be leveraged in the context of XRM and, hence, is an important step towards the goal of reducing the resolution limit of in vivo bone imaging to the single micrometre domain.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia , Animais , Calibragem , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Microscopia/métodos , Estudos Retrospectivos , Raios X
3.
IEEE Trans Med Imaging ; 40(11): 3042-3053, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33844627

RESUMO

Data truncation is a common problem in computed tomography (CT). Truncation causes cupping artifacts inside the field-of-view (FOV) and anatomical structures missing outside the FOV. Deep learning has achieved impressive results in CT reconstruction from limited data. However, its robustness is still a concern for clinical applications. Although the image quality of learning-based compensation schemes may be inadequate for clinical diagnosis, they can provide prior information for more accurate extrapolation than conventional heuristic extrapolation methods. With extrapolated projection, a conventional image reconstruction algorithm can be applied to obtain a final reconstruction. In this work, a general plug-and-play (PnP) method for truncation correction is proposed based on this idea, where various deep learning methods and conventional reconstruction algorithms can be plugged in. Such a PnP method integrates data consistency for measured data and learned prior image information for truncated data. This shows to have better robustness and interpretability than deep learning only. To demonstrate the efficacy of the proposed PnP method, two state-of-the-art deep learning methods, FBPConvNet and Pix2pixGAN, are investigated for truncation correction in cone-beam CT in noise-free and noisy cases. Their robustness is evaluated by showing false negative and false positive lesion cases. With our proposed PnP method, false lesion structures are corrected for both deep learning methods. For FBPConvNet, the root-mean-square error (RMSE) inside the FOV can be improved from 92HU to around 30HU by PnP in the noisy case. Pix2pixGAN solely achieves better image quality than FBPConvNet solely for truncation correction in general. PnP further improves the RMSE inside the FOV from 42HU to around 27HU for Pix2pixGAN. The efficacy of PnP is also demonstrated on real clinical head data.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Algoritmos , Tomografia Computadorizada de Feixe Cônico
4.
Med Phys ; 46(12): e810-e822, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31811794

RESUMO

BACKGROUND: The beam hardening effect is a typical source of artifacts in x-ray cone beam computed tomography (CBCT). It causes streaks in reconstructions and corrupted Hounsfield units toward the center of objects, widely known as cupping artifacts. PURPOSE: We present a novel efficient projection data-based method for reduction of beam-hardening artifacts and incorporate physical constraints on the shape of the compensation functions. The method is calibration-free and requires no additional knowledge of the scanning setup. METHOD: The mathematical model of the beam hardening effect caused by a single material is analyzed. We show that the effect of beam hardening on the resulting functions on the line integral measurements are monotonous and concave functions of the ideal data. This holds irrespective of any limiting assumptions on the energy dependency of the material, the detector response or properties of the x-ray source. A regression model for the beam hardening effect respecting these theoretical restrictions is proposed. Subsequently, we present an efficient method to estimate the parameters of this model directly in projection domain using an epipolar consistency condition. Computational efficiency is achieved by exploiting the linearity of an intermediate function in the formulation of our optimization problem. RESULTS: Our evaluation shows that the proposed physically constrained ECC 2 algorithm is effective even in challenging measured data scenarios with additional sources of inconsistency. CONCLUSIONS: The combination of mathematical consistency condition and a compensation model that is based on the properties of x-ray physics enables us to improve image quality of measured data retrospectively and to decrease the need for calibration in a data-driven manner.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA