Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 156: 155913, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640418

RESUMO

Cytokine therapies have shown promising results against cancers. Cytokines are secreted naturally from different bodily cells. These have fewer side effects but higher specificity than chemotherapy and radiation therapy. In leukemia, changes in normal hematopoiesis and defective leukocyte production limit the efficacy of immunotherapy by reducing the count of functional immune cells. Therefore, the treatment of leukemia needs advanced therapeutics that can target multiple cancer sustaining mechanisms. In combination therapy, using two different therapeutic agents affect cancer growth in many ways and sometimes gives synergistic effects. Here, we examined the effect of the ethanolic olive leaf extract (EOLE) and IL-28B in combination. N-N' Ethyl-nitrosourea (ENU) induced leukemia in Swiss albino mice was treated with EOLE for four weeks and IL-28B for one week after confirming the development of leukemia. The combination of EOLE and IL-28B significantly reduced the blast cell and total WBC counts in the peripheral blood, altered the levels of various cytokines in plasma, and induced the functional activity of NK cells in leukemic mice. The induced NK activity correlates with increased expression of perforin and granzyme studied at the gene level through real-time (RT)-PCR. The treatment of leukemic mice with combined EOLE and IL-28B has also caused an increased serum IL-10 and IFN-γ level, and reduced serum TGF-ß indicates improved overall immunity. Altogether, the combination of EOLE and IL-28B has given substantial therapeutic activity against leukemia.


Assuntos
Leucemia , Olea , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Etilnitrosoureia , Imunoterapia , Interferon gama/metabolismo , Leucemia/tratamento farmacológico , Camundongos , Olea/metabolismo , Extratos Vegetais/farmacologia
2.
Environ Sci Pollut Res Int ; 28(34): 47306-47326, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33893581

RESUMO

Lung cancer is the most aggressive as well as deadly form of cancer and most of the lung cancer cases are involved in direct smoking or passive smoking. Oxidative stress and pulmonary inflammation regulated by some transcription factors like Nrf2, NF-κB etc. play important roles in lung cancer. Various combinations of therapies are currently attributed to lung cancer treatment. A plethora of evidence supports that the consumption of plant-derived foods can prevent chronic diseases like cancer. Leaves of olive (Olea europaea L.) are rich in phenolic compounds which are having antioxidant and anti-inflammatory property. Also, bromelain from pineapple juice and from pineapple stem is a potent anti-inflammatory agent. We took a pragmatic approach to prevent carcinogenesis by supplementing the combination of these two extracts. In this study, we have tried to evaluate the amelioration of various hallmarks associated with benzo(a)pyrene-induced lung carcinogenesis upon the combinatorial treatment of ethanolic olive leaf extract (EOLE) and bromelain. We have studied the role of EOLE in amelioration of BaP-induced oxidative stress in the lung. As several reports of anticancer activity of bromelain are available, we have combined EOLE with bromelain to study their protective role against BaP-mediated lung damage. Changes in DNA integrity, LPO level in lung after EOLE-treated animal were examined. Then, we have evaluated the synergistic role of EOLE and bromelain. We have found that EOLE in combination with bromelain was able to increase the translocation of Nrf2 from cytoplasm to nucleus and decrease the translocation of NF-κB from cytoplasm to nucleus. Combination of treatment also reduced the expression of TNFα, IL-6, and some matrix metalloproteinases in lung tissue. Our findings suggest that EOLE and bromelain can synergistically reduce the BaP-induced lung carcinogenesis associated with inflammation and oxidative stress via regulating the expression of various inflammatory markers and also modulating the activity of pulmonary antioxidant armories.


Assuntos
Neoplasias Pulmonares , Olea , Animais , Antioxidantes , Benzo(a)pireno/toxicidade , Bromelaínas , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , NF-kappa B , Extratos Vegetais/farmacologia , Folhas de Planta
3.
Nutr Cancer ; 72(7): 1200-1210, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31591915

RESUMO

Aim: Pineapple (Ananas comosus (L.) Merr.) is a good source of bromelain (B) and also contain peroxidase. The objective of this study is isoaltion of bromelain plus peroxidase (BP) from the pineapple fruit to evaluate the anticancer activity of BP from the pineapple fruit of Tripura, compared to commercial bromelain against ascitic Dalton's lymphoma cells (DLA) in mice. Methods: By acetone precipitation BP was isolated from the pineapple. Animals bearing DLA, receive B and BP orally for 15 alternative days. Apoptotic proteins are assayed using western blot. Results: BP treated mice showed recover of hemoglobin and WBC count compared to control lymphoma animal. The animal showed significant reduction of body weight due to reduced tunor load and elevated reactive oxygen species (ROS) production, elevated levels of vitamin C and vitamin E and other antioxidants in blood after BP treatment. Histology of liver and kidney also shows restored architecture in BP treated animal compared to only B treated group. BP treatment upregulates the cytochrome C, BAD, and BAX protein and downregulates the Bcl-2 and NF-kß occuring upon BP treatment in the DLA cells collected from lymphoma animal. This induce the apoptosis of DLA cells in lymphoma animal and reduce the tumor load. Conclusion: The present findings suggest that BP from pineapple improves the survival of the induced lymphoma animal compared to only B which may be used as therapeutic target.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Bromelaínas/farmacologia , Linfoma não Hodgkin/tratamento farmacológico , Peroxidase/farmacologia , Extratos Vegetais/farmacologia , Ananas/química , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Humanos , Linfoma não Hodgkin/metabolismo , Linfoma não Hodgkin/patologia , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Toxicol In Vitro ; 55: 24-32, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30453006

RESUMO

The natural anti-cancer agent bromelain is found to be beneficial for either single or multi-targeted therapy in gastric and skin carcinoma, by inhibiting cancer cell growth. Importantly, the presence of peroxidase enhances its biological efficiency. We have now evaluated a panel of cancer cell lines with bromelain in presence or absence of peroxidase to identify that the combination has higher apoptosis inducing potential in all those cell lines. Bromelain plus peroxidase (BM-PR) inhibited acute myeloid (K562) cell proliferation and altered the morphological features. Incidence of apoptosis was established by using annexin V exposure and this was confirmed that the cell cycle was arrested at G0/G1 phase in a concentration-dependent manner. BM-PR increased the intracellular ROS level and altered the mitochondrial membrane potential, as detected using dichlorofluores cin diacetate (DCFDA). It also regulated the expression of apoptosis-related proteins like Bax, Bcl2, caspase-3 and cytochrome besides causing up-regulation of p53 as determined by western blot analysis. These results suggest that BM-PR from pineapple induces apoptosis better than only bromelain in acute myeloid leukemia cells possibly via mitochondria dependent pathway.


Assuntos
Antineoplásicos/farmacologia , Bromelaínas/farmacologia , Leucemia/tratamento farmacológico , Peroxidase/farmacologia , Ananas , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA