Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-14, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732349

RESUMO

The emergence and immune evasion ability of SARS-CoV-2 Omicron strains, mainly BA.5.2 and BF.7 and other variants of concern have raised global apprehensions. With this context, the discovery of multitarget inhibitors may be proven more comprehensive paradigm than its one-drug-to-one target counterpart. In the current study, a library of 271 phytochemicals from 25 medicinal plants from the Indian Himalayan Region has been virtually screened against SARS-CoV-2 by targeting nine virus proteins, viz., papain-like protease, main protease, nsp12, helicase, nsp14, nsp15, nsp16, envelope, and nucleocapsid for screening of a multi-target inhibitor against the viral replication. Initially, 94 phytochemicals were screened by a hybrid machine learning model constructed by combining 6 confirmatory bioassays against SARS-CoV-2 replication using an instance-based learner lazy k-nearest neighbour classifier. Further, 25 screened compounds with excellent drug-like properties were subjected to molecular docking. The phytochemical Cepharadione A from the plant Piper longum showed binding potential against four proteins with the highest binding energy of -10.90 kcal/mol. The compound has acceptable absorption, distribution, metabolism, excretion, and toxicity properties and exhibits stable binding behaviour in terms of root mean square deviation (0.068 ± 0.05 nm), root-mean-square fluctuation, hydrogen bonds, solvent accessible surface area (83.88-161.89 nm2), and molecular mechanics Poisson-Boltzmann surface area during molecular dynamics simulation of 200 ns with selected target proteins. Concerning the utility of natural compounds in the therapeutics formulation, Cepharadione A could be further investigated as a remarkable lead candidate for the development of therapeutic drugs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

2.
PLoS One ; 16(6): e0252759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34125862

RESUMO

Bacterial Leaf Blight (BLB) disease is an extremely ruinous disease in rice, caused by Xanthomonas oryzae pv. oryzae (Xoo). Although various chemicals are available to manage BLB, they are toxic to the environment as well as humans. Hence there is a need to develop new pesticides as alternatives to hazardous chemicals. Therefore, a study was carried out to discover new potent natural pesticides against Xoo from different solvent extracts of Vernonia cinerea. Among all the fractions, the methanolic extract showed the highest inhibition zone. Further, to gain mechanistic insight of inhibitory action, 40 molecules of methanolic extracts were subjected for in silico study against two enzymes D-alanine-D-alanine ligase (Ddl) and Peptide deformylase (PDF). In silico study showed Rutin and Methanone, [1,4-dimethyl-7-(1- methylethyl)-2- azulenyl]phenyl have a good binding affinity with Ddl while Phenol, 2,4-bis(1-phenylethyl)- and 1,2-Benzenedicarboxylic acid, diisooctyl ester showed an excellent binding affinity to PDF. Finally, the system biology approach was applied to understand the agrochemical's effect in the cell system of bacteria against both the enzymes. Conclusively, these four-hit compounds may have strong potential against Xoo and can be used as biopesticides in the future.


Assuntos
Antibacterianos/farmacologia , Extratos Vegetais/farmacologia , Veronica/química , Xanthomonas/efeitos dos fármacos , Amidoidrolases/química , Amidoidrolases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligantes , Metanol/química , Simulação de Acoplamento Molecular , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Extratos Vegetais/química , Ligação Proteica , Rutina/análise , Rutina/química , Rutina/farmacologia
3.
Sci Rep ; 10(1): 20397, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230180

RESUMO

COVID-19 caused by the SARS-CoV-2 is a current global challenge and urgent discovery of potential drugs to combat this pandemic is a need of the hour. 3-chymotrypsin-like cysteine protease (3CLpro) enzyme is the vital molecular target against the SARS-CoV-2. Therefore, in the present study, 1528 anti-HIV1compounds were screened by sequence alignment between 3CLpro of SARS-CoV-2 and avian infectious bronchitis virus (avian coronavirus) followed by machine learning predictive model, drug-likeness screening and molecular docking, which resulted in 41 screened compounds. These 41 compounds were re-screened by deep learning model constructed considering the IC50 values of known inhibitors which resulted in 22 hit compounds. Further, screening was done by structural activity relationship mapping which resulted in two structural clefts. Thereafter, functional group analysis was also done, where cluster 2 showed the presence of several essential functional groups having pharmacological importance. In the final stage, Cluster 2 compounds were re-docked with four different PDB structures of 3CLpro, and their depth interaction profile was analyzed followed by molecular dynamics simulation at 100 ns. Conclusively, 2 out of 1528 compounds were screened as potential hits against 3CLpro which could be further treated as an excellent drug against SARS-CoV-2.


Assuntos
Fármacos Anti-HIV/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Quimioinformática/métodos , Aprendizado Profundo , Reposicionamento de Medicamentos/métodos , HIV-1/efeitos dos fármacos , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Vírus da Bronquite Infecciosa/efeitos dos fármacos , Simulação de Acoplamento Molecular , SARS-CoV-2/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA