Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(2): 2360-2376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38063966

RESUMO

The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 µm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Nanofibras , Nanopartículas , Selênio , Viroses , Animais , Cães , Humanos , Selênio/farmacologia , Nanofibras/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Nanopartículas/química , Antivirais/farmacologia
2.
Mater Sci Eng C Mater Biol Appl ; 94: 445-452, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423728

RESUMO

In this work, the anti-bacterial effect of Aloe vera derivate fibers produced by the electrospinning method was reported. Aloe vera Polyvinylpyrrolidone (Av/PVP) and Aloe vera acetate-Polyvinylpyrrolidone (AvAc/PVP) electrospun fibers were prepared with different concentrations and their microstructure and mechanical properties were studied. Various methods such as differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), water contact angle (CA) tests, Fourier-Transform Nuclear Magnetic Resonance (FT-NMR), scanning electron microscope (SEM), X-ray diffraction (XRD), CHNSO and Fourier-Transform Infrared Spectroscopy (FT-IR) were used to characterize prepared samples. (Av/PVP) electrospun fibers were prepared with different concentrations (6-10 wt%) of PVP and 0.2 wt% Av blended and tested in medicinal herb for wound healing, antibacterial and anti-inflammatory properties. For further study, the effect of AvAc film on the properties of composite film was studied. AvAc increased the thermal stability and crystallite size percentage of samples. Antibacterial and antiviral test studies on the scaffold displayed no bacterial and viral growth. These results suggest that AvAc/PVP scaffolds could be promising candidates for wound healing applications.


Assuntos
Acetatos/química , Aloe/química , Antibacterianos/farmacologia , Teste de Materiais , Nanofibras/química , Acetilação , Varredura Diferencial de Calorimetria , Testes de Sensibilidade Microbiana , Nanofibras/ultraestrutura , Povidona/química , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Resistência à Tração , Termogravimetria , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA