Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oral Dis ; 29(7): 2468-2482, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35699367

RESUMO

OBJECTIVE: Herbal therapies are utilized to treat a broad diversity of diseases all over the globe. Although no clinical studies have been conducted to demonstrate the antibacterial, antimicrobial, and antiplaque characteristics of these plants, this does not imply that they are ineffectual as periodontal treatments or anti-cariogenic drugs. However, there is a scarcity of research confirming their efficacy and worth. SUBJECT: Herbs are utilized in dentistry as antimicrobial, antineoplastic, antiseptic, antioxidant, and analgesics agents as well as for the elimination of bad breath. In addition, the application of herbal agents in tissue engineering improved the regeneration of oral and dental tissues. This study reviews the application of medicinal herbs for the treatment of dental and oral diseases in different aspects. METHODS: This article focuses on current developments in the use of medicinal herbs and phytochemicals in oral and dental health. An extensive literature review was conducted via an Internet database, mostly PubMed. The articles included full-text publications written in English without any restrictions on a date. CONCLUSION: Plants have been suggested, as an alternate remedy for oral-dental problems, and this vocation needs long-term dependability. More research on herbal medicine potential as pharmaceutical sources and/or therapies is needed.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Fitoterapia , Antibacterianos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
2.
Phytother Res ; 36(3): 1156-1181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35129230

RESUMO

Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.


Assuntos
Curcumina , Nanopartículas , Neoplasias , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Micelas , Nanomedicina , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Phytother Res ; 35(4): 1719-1738, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33058407

RESUMO

BACKGROUND: Rutin as a natural flavonoid compound has revealed an extensive range of therapeutic potentials. PURPOSE: The current paper is focused on the numerous studies on rutin nanoformulations regarding its broad spectrum of therapeutic potentials. STUDY AND METHODS: A review was conducted in electronic databases (PubMed) to identify relevant published literature in English. No restrictions on publication date were imposed. RESULTS: The literature search provided 7,078 results for rutin. Among them, 25 papers were related to the potential biological activities of rutin nanoformulations. Polymeric nanoparticles were the most studied nanoformulations for rutin (14 titles) and lipid nanoparticles (5 titles) were in second place. The reviewed literature showed that rutin has been used as an antimicrobial, antifungal, and anti-allergic agent. Improving the bioavailability of rutin using novel drug-delivery methods will help the investigators to use its useful effects in the treatment of various chronic human diseases. CONCLUSION: It can be concluded that the preparation of rutin nanomaterials for the various therapeutic objects confirmed the enhanced aqueous solubility as well as enhanced efficacy compared to conventional delivery of rutin. However, more investigations should be conducted to confirm the improved bioavailability of the rutin nanoformulations.


Assuntos
Nanopartículas/uso terapêutico , Rutina/uso terapêutico , Humanos , Rutina/farmacologia
4.
Phytother Res ; 35(5): 2500-2513, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33295678

RESUMO

Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/ß-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.

5.
Biofactors ; 46(6): 874-893, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33037744

RESUMO

Medicinal plants have always been utilized for the prevention and treatment of the spread of different diseases all around the world. To name some traditional medicine that has been used over centuries, we can refer to phytochemicals such as naringin, icariin, genistein, and resveratrol gained from plants. Osteogenic differentiation and mineralization of stem cells can be the result of specific bioactive compounds from plants. One of the most appealing choices for therapy can be mesenchymal stem cells (MSCs) because it has a great capability of self-renewal and differentiation into three descendants, namely, endoderm, mesoderm, and ectoderm. Stem cell gives us the glad tidings of great advances in tissue regeneration and transplantation field for treatment of diseases. Using plant bioactive phytochemicals also holds tremendous promises in treating diseases such as osteoporosis. The purpose of the present review article thus is to investigate what are the roles and consequences of phytochemicals on osteogenic differentiation of MSCs.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Humanos
6.
Phytother Res ; 34(8): 1926-1946, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32166813

RESUMO

Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.


Assuntos
Anti-Infecciosos/uso terapêutico , Nanopartículas/uso terapêutico , Anti-Infecciosos/farmacologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos
7.
Phytother Res ; 33(11): 2927-2937, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31452263

RESUMO

Curcumin is a dietary polyphenol and a bioactive phytochemical agent that possesses anti-inflammatory, antioxidant, anticancer, and chemopreventive properties. Some of the predominant activities of stem cells include regeneration of identical cells and the ability to maintain the proliferation and multipotentiality. However, these cells could be stimulated to differentiate into specific cell types. Curcumin protects some stem cells from toxicity and can stimulate proliferation and differentiation of stem cells. In the present review, we summarize the antioxidant, stemness activity, antiaging, and neuroprotective as well as wound healing and regenerative effects of curcumin.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Curcumina/farmacologia , Células-Tronco/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Regeneração/efeitos dos fármacos , Células-Tronco/fisiologia , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA