Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066964

RESUMO

The serine protease, DegP exhibits proteolytic and chaperone activities, essential for cellular protein quality control and normal cell development in eukaryotes. The P. falciparum DegP is essential for the parasite survival and required to combat the oscillating thermal stress conditions during the infection, protein quality checks and protein homeostasis in the extra-cytoplasmic compartments, thereby establishing it as a potential target for drug development against malaria. Previous studies have shown that diisopropyl fluorophosphate (DFP) and the peptide SPMFKGV inhibit E. coli DegP protease activity. To identify novel potential inhibitors specific to PfDegP allosteric and the catalytic binding sites, we performed a high throughput in silico screening using Malaria Box, Pathogen Box, Maybridge library, ChEMBL library and the library of FDA approved compounds. The screening helped identify five best binders that showed high affinity to PfDegP allosteric (T0873, T2823, T2801, RJC02337, CD00811) and the catalytic binding site (T0078L, T1524, T2328, BTB11534 and 552691). Further, molecular dynamics simulation analysis revealed RJC02337, BTB11534 as the best hits forming a stable complex. WaterMap and electrostatic complementarity were used to evaluate the novel bio-isosteric chemotypes of RJC02337, that led to the identification of 231 chemotypes that exhibited better binding affinity. Further analysis of the top 5 chemotypes, based on better binding affinity, revealed that the addition of electron donors like nitrogen and sulphur to the side chains of butanoate group are more favoured than the backbone of butanoate group. In a nutshell, the present study helps identify novel, potent and Plasmodium specific inhibitors, using high throughput in silico screening and bio-isosteric replacement, which may be experimentally validated.


Assuntos
Antimaláricos/farmacologia , Simulação por Computador , Desenho de Fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Antimaláricos/química , Sítios de Ligação , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Evolução Molecular , Simulação de Acoplamento Molecular , Peptídeos/química , Peptídeos/farmacologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Eletricidade Estática , Termodinâmica , Água/química
2.
J Biomol Struct Dyn ; 36(13): 3531-3540, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29039247

RESUMO

Kinases and phosphatases are involved in many essential processes in Plasmodium lifecycle. Among the identified 67 Plasmodium falciparum phosphatases, Phosphatase of Regenerating Liver (PRL) family protein homolog, PfPRL, is an essential parasite tyrosine phosphatase. PfPRL is shown to be prenylated, secreted, and involved in the host invasion process. In the present study, a structure-based high throughput in silico screening of PfPRL binders, using ChEMBL-NTD compounds lead to the identification of nine compounds based on binding energy, Lipinski rule of five, and QED score. The most of the shortlisted compounds are known to inhibit parasite growth at a concentration (EC50) ≤2 µm in in vitro P. falciparum culture assays. MD simulations were carried out on the shortlisted nine potential enzyme-inhibitor complexes to analyze specificity, stability, and to calculate the free binding energies of the complexes. The study identifies PfPRL as one of the potential drug targets for selected ChEMBL-NTD compounds that may be exploited as a scaffold to develop novel antimalarials.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Malária Falciparum/parasitologia , Simulação de Dinâmica Molecular , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo
3.
Mol Plant ; 9(11): 1464-1477, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27773616

RESUMO

Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants.


Assuntos
Artemisininas/metabolismo , Artemisininas/farmacologia , Malária Falciparum/tratamento farmacológico , Engenharia Metabólica , Células Vegetais/metabolismo , Administração Oral , Animais , Artemisininas/uso terapêutico , Cloroplastos/genética , Camundongos , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA