Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474459

RESUMO

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Assuntos
Artrópodes , Óleos Voláteis , Piper nigrum , Piper , Sesquiterpenos , Animais , Óleos Voláteis/química , Acetilcolinesterase , Cromatografia Gasosa-Espectrometria de Massas , Piper/química , Óleos de Plantas/química
2.
Heliyon ; 9(4): e15545, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128337

RESUMO

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

3.
Comb Chem High Throughput Screen ; 25(11): 1859-1874, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34565319

RESUMO

BACKGROUND: Malaria is responsible for social and economic burden in most lowincome malaria-affected countries. Thus, newer antimalarials are needed to tackle morbidities and mortalities associated with the drug-resistant malarial strains. Haemoglobin digestion inside the food vacuole of malarial parasite would lead to producing redox-active and toxic-free heme. The detoxification process adopted by Plasmodium sp. would give rise to hemozoin (Hz) (betahematin) formation. Targeting the pathway of hemozoin formation is considered a validated target for the discovery of newer antimalarials. OBJECTIVE: This study aims to collect detailed information about aspects of hemozoin (Hz) (betahematin) inhibitors. METHODS: A systemic search has been carried out using PubMed, Google Scholar, CNKI, etc., for relevant studies having the keyword, 'hemozoin or beta-hematin' for almost the last 2 decades (2000-2021). RESULTS: This review tries to summarize all the recent advancements made for the developments of synthetic, natural isolated phytoconstituents and plant extracts inhibiting the hemozoin (betahematin) formation. CONCLUSION: Thus they would act as promising antimalarial candidates in the near future.


Assuntos
Antimaláricos , Malária , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Heme/metabolismo , Hemeproteínas , Hemoglobinas , Humanos , Malária/tratamento farmacológico , Malária/metabolismo , Extratos Vegetais , Plasmodium falciparum
4.
Comb Chem High Throughput Screen ; 24(3): 415-422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32503404

RESUMO

The extracts and the compounds isolated from Phyllanthus amarus Schumm and Thonn (Family: Euphorbiaceae) have shown a wide spectrum of pharmacological activities including antiviral, antibacterial, antiplasmodial, antimalarial, antimicrobial, anticancer, antidiabetic, hypolipidemic, antioxidant, hepatoprotective, nephroprotective and diurectic properties. BACKGROUND: This investigation was aimed at exploring the anxiolytic potential of Phyllanthus amarus standardized extracts and predict probable role of marker phyto constitutents. OBJECTIVE AND METHODS: Three standardized extracts of Phyllanthus amarus plant viz. standardized aqueous extract of Phyllanthus amarus whole plant (PAAE), standardized methanolic extract of P. amarus leaf (PAME) and the standardized hydro-methanolic extract of P. amarus leaf (PAHME) were tested in the classical animal models of anxiety: Elevated plus-maze model and Light & Dark Exploration test. RESULTS: The lower doses of the tannin rich extract (PAHME) of the P. amarus possess significant anxiolytic activity compared to lignin rich (PAME) and aqueous extracts (PAAE), while at a higher dose (400mg/kg) the results of all three extracts appears to be potentially sedative. While the molecular docking studies support these probable anxiolytic, the sedative effects of the Phyllanthus amarus extracts could be due to the interaction of tannins and lignans with the GABAbenzodiazepine receptor complex. CONCLUSION: The results of the present study indicate that the tannin-rich extract of the P. amarus may have potential clinical applications in the management of anxiety. It can be further studied for optimum dosage to be used as a future of anti-anxiety drug development or as a standardized Phytomedicine.


Assuntos
Ansiolíticos/farmacologia , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Lignanas/farmacologia , Phyllanthus/química , Extratos Vegetais/farmacologia , Animais , Ansiolíticos/química , Ansiolíticos/isolamento & purificação , Ansiedade/tratamento farmacológico , Feminino , Glucosídeos/química , Glucosídeos/isolamento & purificação , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Lignanas/química , Lignanas/isolamento & purificação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA