Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Screen ; 15(8): 990-1000, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20817887

RESUMO

Identification of active compounds in high-throughput screening (HTS) contexts can be substantially improved by applying classical experimental design and statistical inference principles to all phases of HTS studies. The authors present both experimental and simulated data to illustrate how true-positive rates can be maximized without increasing false-positive rates by the following analytical process. First, the use of robust data preprocessing methods reduces unwanted variation by removing row, column, and plate biases. Second, replicate measurements allow estimation of the magnitude of the remaining random error and the use of formal statistical models to benchmark putative hits relative to what is expected by chance. Receiver Operating Characteristic (ROC) analyses revealed superior power for data preprocessed by a trimmed-mean polish method combined with the RVM t-test, particularly for small- to moderate-sized biological hits.


Assuntos
Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Ensaios de Triagem em Larga Escala/normas , Modelos Estatísticos , Projetos de Pesquisa , Animais , Sistema Livre de Células/efeitos dos fármacos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/normas , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Reações Falso-Positivas , Imunofluorescência/métodos , Imunofluorescência/normas , Imunofluorescência/estatística & dados numéricos , Ensaios de Triagem em Larga Escala/métodos , Luciferases de Vaga-Lume/análise , Luciferases de Vaga-Lume/metabolismo , Luciferases de Renilla/análise , Luciferases de Renilla/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/isolamento & purificação , Inibidores da Síntese de Proteínas/farmacologia , Curva ROC , Distribuição Aleatória
2.
Bioinformatics ; 23(13): 1648-57, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17463024

RESUMO

MOTIVATION: High-throughput screening (HTS) is an early-stage process in drug discovery which allows thousands of chemical compounds to be tested in a single study. We report a method for correcting HTS data prior to the hit selection process (i.e. selection of active compounds). The proposed correction minimizes the impact of systematic errors which may affect the hit selection in HTS. The introduced method, called a well correction, proceeds by correcting the distribution of measurements within wells of a given HTS assay. We use simulated and experimental data to illustrate the advantages of the new method compared to other widely-used methods of data correction and hit selection in HTS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Artefatos , Bioensaio/métodos , Interpretação Estatística de Dados , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Tecnologia Farmacêutica/métodos , Sensibilidade e Especificidade
3.
Bioinformatics ; 22(11): 1408-9, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16595559

RESUMO

MOTIVATION: High-throughput screening (HTS) plays a central role in modern drug discovery, allowing for testing of >100,000 compounds per screen. The aim of our work was to develop and implement methods for minimizing the impact of systematic error in the analysis of HTS data. To the best of our knowledge, two new data correction methods included in HTS-Corrector are not available in any existing commercial software or freeware. RESULTS: This paper describes HTS-Corrector, a software application for the analysis of HTS data, detection and visualization of systematic error, and corresponding correction of HTS signals. Three new methods for the statistical analysis and correction of raw HTS data are included in HTS-Corrector: background evaluation, well correction and hit-sigma distribution procedures intended to minimize the impact of systematic errors. We discuss the main features of HTS-Corrector and demonstrate the benefits of the algorithms.


Assuntos
Biologia Computacional/métodos , Algoritmos , Simulação por Computador , Computadores , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Indústria Farmacêutica , Modelos Estatísticos , Controle de Qualidade , Reprodutibilidade dos Testes , Software , Tecnologia Farmacêutica
4.
Nat Biotechnol ; 24(2): 167-75, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16465162

RESUMO

High-throughput screening is an early critical step in drug discovery. Its aim is to screen a large number of diverse chemical compounds to identify candidate 'hits' rapidly and accurately. Few statistical tools are currently available, however, to detect quality hits with a high degree of confidence. We examine statistical aspects of data preprocessing and hit identification for primary screens. We focus on concerns related to positional effects of wells within plates, choice of hit threshold and the importance of minimizing false-positive and false-negative rates. We argue that replicate measurements are needed to verify assumptions of current methods and to suggest data analysis strategies when assumptions are not met. The integration of replicates with robust statistical methods in primary screens will facilitate the discovery of reliable hits, ultimately improving the sensitivity and specificity of the screening process.


Assuntos
Bioensaio/métodos , Biometria/métodos , Interpretação Estatística de Dados , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Análise em Microsséries/métodos , Guias como Assunto , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA