Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33144872

RESUMO

Kang-Xian (KX) pills have been clinically used for the treatment of chronic hepatic injury (CHI). However, the mechanisms of KX on CHI remain unknown. The aim of this study mainly focused on the anti-inflammatory effects of KX in a CHI mouse model based on modulating gut microbiota and gut permeability. We first established a CHI model using carbon tetrachloride (CCl4) and treated it with KX. The anti-inflammatory effects of KX on CHI model mice and the changes in gut permeability after KX treatment were also investigated. 16S rRNA analysis was used to study the changes of gut microbiota composition after KX treatment. In addition, gut microbiota was depleted using a combination of antibiotics in order to further confirm that KX could inhibit the inflammatory response and decrease gut permeability to treat CHI by modulating the gut microbiota. Results showed that KX treatment significantly improved liver function in CHI model mice. KX could also increase the levels of tight junction proteins in the colon and decrease the expression of proinflammatory cytokines in the liver. 16S rRNA analysis indicated that KX treatment affected the alpha and beta diversities in CHI model mice. Further analysis of 16S rRNA sequencing indicated that KX treatment increased the ratio of Firmicutes to Bacteroidetes at the phylum level. At the genus level, KX treatment increased the relative abundance of Lactobacillus, Bacteroides, and Akkermansia and decreased the relative abundance of Ralstonia, Alloprevotella, and Lachnoclostridium. However, KX could not alleviate CHI after depleting the gut microbiota. The effects of KX on gut permeability and inflammatory response in the liver were also decreased following the depletion of gut microbiota. In conclusion, our current study demonstrated that gut microbiota was significantly affected during CHI progression. KX could inhibit the inflammatory response and decrease the gut permeability in CHI model mice through modulating the gut microbiota.

2.
Curr Neurovasc Res ; 15(3): 186-192, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30062967

RESUMO

BACKGROUND: Epilepsy is a chronic neurological disorder affecting an estimated 50 million people worldwide. Emerging evidences have accumulated over the past decades supporting the role of inflammation in the pathogenesis of epilepsy. Curcumin is a nature-derived active molecule demonstrating anti-inflammation efficacy. However, its effects on epilepsy and corresponding mechanisms remain elusive. OBJECTIVE: To investigate the effects of curcumin on epilepsy and its underlying mechanism. METHOD: Forty Sprague Dawley rats were divided into four groups: (1) control group; (2) Kainic Acid (KA)-induced epilepsy group; (3) curcumin group; and (4) curcumin pretreatment before KA stimulation group. Morris water maze was utilized to assess the effect of curcumin on KA-induced epilepsy. The hippocampi were obtained from rats and subjected to western blot. Immunohistochemistry was conducted to investigate the underlying mechanisms. RESULTS: Rats received curcumin demonstrated improvement of recognition deficiency and epilepsy syndromes induced by KA. Western blot showed that KA stimulation increased the expression of IL-1ß and NLRP3, which were reduced by curcumin treatment. Further investigations revealed that curcumin inhibited the activation of NLPR3/inflammasome in epilepsy and reduced neuronal loss in hippocampus. CONCLUSION: Curcumin inhibits KA-induced epileptic syndromes via suppression of NLRP3 inflammasome activation; therefore, offers a potential therapy for epilepsy.


Assuntos
Anti-Inflamatórios/uso terapêutico , Curcumina/uso terapêutico , Epilepsia/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neurônios/efeitos dos fármacos , Animais , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/patologia , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Hipocampo/patologia , Interleucina-1beta/metabolismo , Ácido Caínico/toxicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA