Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microrna ; 11(1): 45-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35307000

RESUMO

BACKGROUND: Since ancient times, "betel leaf" (Piper betle) has been revered for its religious, cultural, and medicinal properties. Phytochemicals from the Piper betle are effective in a variety of conditions, including cancer. To date, however, no genomic study or evidence has been found to elucidate the regulatory mechanism that underpins its therapeutic properties. This is the first study of its kind to predict Piper betle miRNAs and also the first genomics source representation of Piper betle. According to previous research, miRNAs from the plants we eat can regulate gene expression. In line with this, our in-silico study revealed that Piper betle and human cross-kingdom control occurs. METHODS: This study demonstrates the prediction and in-silico validation of Piper betle miRNAs from NGS-derived transcript sequences. The cross-kingdom regulation, which can also be understood as inter- species RNA regulation, was studied to identify human mRNA targets controlled by Piper betle miRNAs. Functional annotation and gene-disease association of human targets were performed to understand the role of Piper betle miRNAs in human health and disease. The protein-protein interaction and expression study of targets was further carried out to decipher their role in cancer development. RESULTS: Identified six Piper betle miRNAs belonging to miR156, miR164, miR172, and miR535 families were discovered to target 198 human mRNAs involved in various metabolic and disease processes. Angiogenesis and the cell surface signaling pathway were the most enriched gene ontology correlated with targets, both of which play a critical role in disease mechanisms, especially in the case of carcinoma. In an analysis of gene-disease interactions, 40 genes were found to be related to cancer. According to a protein-protein interaction, the CDK6 gene, which is thought to be a central regulator of cell cycle progression, was found as a hub protein, affecting the roles of CBFB, SAMD9, MDM4, AXIN2, and NOTCH2 oncogenes. Further investigation revealed that pbe-miRNA164a can be used as a regulator to minimise disease severity in Acute Myeloid Leukemia, where CDK6 expression is highest compared to normal cells. CONCLUSION: The predicted pbe-miRNA164a in this study can be a promising suppressor of CDK6 gene involved in tumour angiogenesis. In vivo validation of the pbe-miRNA164a mimic could pave the way for new opportunities to fight cancer and leverage the potential of Piper betle in the healthcare sector.


Assuntos
MicroRNAs , Piper betle , Proteínas de Ciclo Celular , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs/genética , Piper betle/química , Extratos Vegetais/química , Folhas de Planta/química , Proteínas Proto-Oncogênicas/análise
2.
Sci Rep ; 11(1): 20295, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645849

RESUMO

Novel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/metabolismo , Compostos Fitoquímicos/farmacologia , Antivirais/farmacologia , Biologia Computacional/métodos , Proteases 3C de Coronavírus/efeitos dos fármacos , Proteases 3C de Coronavírus/ultraestrutura , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Peptídeo Hidrolases/efeitos dos fármacos , Compostos Fitoquímicos/metabolismo , Inibidores de Proteases/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
3.
Comput Biol Med ; 136: 104662, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34311261

RESUMO

The coronavirus disease of 2019 (COVID-19) began as an outbreak and has taken a toll on human lives. The current pandemic requires scientific attention; hence we designed a systematic computational workflow to identify the cellular microRNAs (miRNAs) from human host possessing the capability to target and silence 3'UTR of SARS-CoV-2 genome. Based on this viewpoint, we extended our miRNA search to medicinal plants like Ocimum tenuiflorum, Zingiber officinale and Piper nigrum, which are well-known to possess antiviral properties, and are often consumed raw or as herbal decoctions. Such an approach, that makes use of miRNA of one species to interact and silence genes of another species including viruses is broadly categorized as cross-kingdom interactions. As a part of our genomics study on host-virus-plant interaction, we identified one unique 3'UTR conserved site 'GGAAGAG' amongst 5024 globally submitted SARS-CoV-2 complete genomes, which can be targeted by the human miRNA 'hsa-miR-1236-3p' and by Z. officinale miRNA 'zof-miR2673b'. Additionally, we also predicted that the members of miR477 family commonly found in these three plant genomes possess an inherent potential to silence viral genome RNA and facilitate antiviral defense against SARS-CoV-2 infection. In conclusion, this study reveals a universal site in the SARS-CoV-2 genome that may be crucial for targeted therapeutics to cure COVID-19.


Assuntos
COVID-19 , MicroRNAs , Plantas Medicinais , Regiões 3' não Traduzidas/genética , Biologia Computacional , Genômica , Humanos , MicroRNAs/genética , Plantas Medicinais/genética , RNA de Plantas , SARS-CoV-2
4.
Plant Signal Behav ; 15(1): 1699265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31797719

RESUMO

Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identified 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.


Assuntos
Bacopa/genética , Bacopa/metabolismo , MicroRNAs/metabolismo , Transcriptoma/genética , Homólogo 5 da Proteína Cromobox , Ontologia Genética , Humanos , MicroRNAs/genética
5.
Mol Biol Rep ; 46(3): 2979-2995, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066002

RESUMO

MicroRNAs (miRNAs) are conserved small non coding RNAs, which are typically 22-24 nucleotides long and play an important role in post transcription regulation andin various biological processes in both animals and plants. Ocimum basilicum is an important medicinal plant having different bioactive compounds eugenol and essential oils that possess numerous therapeutic properties. However, only a few miRNAs of Ocimum basilicum and its function have been studied till date. The present study focusses on the identification of miRNA from expressed sequenced tags by carrying out computational approaches based on the homology search method. A total of 10 potential miRNAs with 8 different families were predicted in O.basilicum. Furthermore, the psRNA target server was used to predict cross kingdom target genes on human transcriptome for identification ofpotential miRNAs. Eight miRNA families were found to modulate the 87 human target genes which were associated with RAS/MAPK signalling cascade, cardiomyopathy, HIV, breast cancer, lung cancer, Alzheimer's diseases and several neurological disorders. Moreover, O.basilicum miRNAs regulate the key human target genes having significance in various diseases and important biological networks with 10 hub nodes interactions. Thus this study gives the pave for further studies to explore the potential of miRNA mediated cross kingdom regulation and treatment of various diseases including cancer.


Assuntos
Biologia Computacional/métodos , Ocimum basilicum/genética , Animais , Sequência de Bases , Sequência Conservada , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas/genética , Humanos , MicroRNAs/genética , Anotação de Sequência Molecular , Ocimum basilicum/metabolismo , Filogenia , RNA de Plantas/genética , Transcriptoma
6.
Genomics ; 111(4): 772-785, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775783

RESUMO

O. basilicum is medicinally important herb having inevitable role in human health. However, the mechanism of action is largely unknown. Present study aims to understand the mechanism of regulation of key human target genes that could plausibly modulated by O. basilicum miRNAs in cross kingdom manner using computational and system biology approach. O. basilicum miRNA sequences were retrieved and their corresponding human target genes were identified using psRNA target and interaction analysis of hub nodes. Six O. basilicum derived miRNAs were found to modulate 26 human target genes which were associated `with PI3K-AKTand MAPK signaling pathways with PTPN11, EIF2S2, NOS1, IRS1 and USO1 as top 5 Hub nodes. O. basilicum miRNAs not only regulate key human target genes having a significance in various diseases but also paves the path for future studies that might explore potential of miRNA mediated cross-kingdom regulation, prevention and treatment of various human diseases including cancer.


Assuntos
Redes Reguladoras de Genes , Genoma Humano , MicroRNAs/genética , Ocimum basilicum/genética , Plantas Medicinais/genética , RNA de Plantas/genética , Proteínas da Matriz do Complexo de Golgi/genética , Proteínas da Matriz do Complexo de Golgi/metabolismo , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , RNA de Plantas/metabolismo , Biologia de Sistemas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA