Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sleep ; 46(10)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531587

RESUMO

STUDY OBJECTIVES: Healthy aging and many disorders show reduced sleep-dependent memory consolidation and corresponding alterations in non-rapid eye movement sleep oscillations. Yet sleep physiology remains a relatively neglected target for improving memory. We evaluated the effects of closed-loop auditory stimulation during sleep (CLASS) on slow oscillations (SOs), sleep spindles, and their coupling, all in relation to motor procedural memory consolidation. METHODS: Twenty healthy young adults had two afternoon naps: one with auditory stimulation during SO upstates and another with no stimulation. Twelve returned for a third nap with stimulation at variable times in relation to SO upstates. In all sessions, participants trained on the motor sequence task prior to napping and were tested afterward. RESULTS: Relative to epochs with no stimulation, upstate stimuli disrupted sleep and evoked SOs, spindles, and SO-coupled spindles. Stimuli that successfully evoked oscillations were delivered closer to the peak of the SO upstate and when spindle power was lower than stimuli that failed to evoke oscillations. Across conditions, participants showed similar significant post-nap performance improvement that correlated with the density of SO-coupled spindles. CONCLUSIONS: Despite its strong effects on sleep physiology, CLASS failed to enhance motor procedural memory. Our findings suggest methods to overcome this failure, including better sound calibration to preserve sleep continuity and the use of real-time predictive algorithms to more precisely target SO upstates and to avoid disrupting endogenous SO-coupled spindles and their mnemonic function. They motivate continued development of CLASS as an intervention to manipulate sleep oscillatory dynamics and improve memory.


Assuntos
Consolidação da Memória , Adulto Jovem , Humanos , Estimulação Acústica , Consolidação da Memória/fisiologia , Sono/fisiologia , Memória/fisiologia , Eletroencefalografia
2.
Autism Res ; 16(2): 271-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546577

RESUMO

There is converging evidence that abnormal thalamocortical interactions contribute to attention deficits and sensory sensitivities in autism spectrum disorder (ASD). However, previous functional MRI studies of thalamocortical connectivity in ASD have produced inconsistent findings in terms of both the direction (hyper vs. hypoconnectivity) and location of group differences. This may reflect, in part, the confounding effects of head motion during scans. In the present study, we investigated resting-state thalamocortical functional connectivity in 8-25 year-olds with ASD and their typically developing (TD) peers. We used pre-scan training, on-line motion correction, and rigorous data quality assurance protocols to minimize motion confounds. ASD participants showed increased thalamic connectivity with temporal cortex relative to TD. Both groups showed similar age-related decreases in thalamic connectivity with occipital cortex, consistent with a process of circuit refinement. Findings of thalamocortical hyperconnectivity in ASD are consistent with other evidence that decreased thalamic inhibition leads to increase and less filtered sensory information reaching the cortex where it disrupts attention and contributes to sensory sensitivity. This literature motivates studies of mechanisms, functional consequences, and treatment of thalamocortical circuit dysfunction in ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Adulto Jovem , Transtorno do Espectro Autista/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lobo Occipital , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico/métodos
3.
Neuroimage Clin ; 33: 102956, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35151039

RESUMO

Rolandic epilepsy is the most common form of epileptic encephalopathy, characterized by sleep-potentiated inferior Rolandic epileptiform spikes, seizures, and cognitive deficits in school-age children that spontaneously resolve by adolescence. We recently identified a paucity of sleep spindles, physiological thalamocortical rhythms associated with sleep-dependent learning, in the Rolandic cortex during the active phase of this disease. Because spindles are generated in the thalamus and amplified through regional thalamocortical circuits, we hypothesized that: 1) deficits in spindle rate would involve but extend beyond the inferior Rolandic cortex in active epilepsy and 2) regional spindle deficits would better predict cognitive function than inferior Rolandic spindle deficits alone. To test these hypotheses, we obtained high-resolution MRI, high-density EEG recordings, and focused neuropsychological assessments in children with Rolandic epilepsy during active (n = 8, age 9-14.7 years, 3F) and resolved (seizure free for > 1 year, n = 10, age 10.3-16.7 years, 1F) stages of disease and age-matched controls (n = 8, age 8.9-14.5 years, 5F). Using a validated spindle detector applied to estimates of electrical source activity in 31 cortical regions, including the inferior Rolandic cortex, during stages 2 and 3 of non-rapid eye movement sleep, we compared spindle rates in each cortical region across groups. Among detected spindles, we compared spindle features (power, duration, coherence, bilateral synchrony) between groups. We then used regression models to examine the relationship between spindle rate and cognitive function (fine motor dexterity, phonological processing, attention, and intelligence, and a global measure of all functions). We found that spindle rate was reduced in the inferior Rolandic cortices in active but not resolved disease (active P = 0.007; resolved P = 0.2) compared to controls. Spindles in this region were less synchronous between hemispheres in the active group (P = 0.005; resolved P = 0.1) compared to controls; but there were no differences in spindle power, duration, or coherence between groups. Compared to controls, spindle rate in the active group was also reduced in the prefrontal, insular, superior temporal, and posterior parietal regions (i.e., "regional spindle rate", P < 0.039 for all). Independent of group, regional spindle rate positively correlated with fine motor dexterity (P < 1e-3), attention (P = 0.02), intelligence (P = 0.04), and global cognitive performance (P < 1e-4). Compared to the inferior Rolandic spindle rate alone, models including regional spindle rate trended to improve prediction of global cognitive performance (P = 0.052), and markedly improved prediction of fine motor dexterity (P = 0.006). These results identify a spindle disruption in Rolandic epilepsy that extends beyond the epileptic cortex and a potential mechanistic explanation for the broad cognitive deficits that can be observed in this epileptic encephalopathy.


Assuntos
Epilepsia Generalizada , Epilepsia Rolândica , Adolescente , Criança , Eletroencefalografia/métodos , Epilepsia Rolândica/diagnóstico por imagem , Humanos , Convulsões , Tálamo
4.
J Neurosci ; 41(8): 1816-1829, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33468567

RESUMO

Childhood epilepsy with centrotemporal spikes (CECTS) is the most common focal epilepsy syndrome, yet the cause of this disease remains unknown. Now recognized as a mild epileptic encephalopathy, children exhibit sleep-activated focal epileptiform discharges and cognitive difficulties during the active phase of the disease. The association between the abnormal electrophysiology and sleep suggests disruption to thalamocortical circuits. Thalamocortical circuit dysfunction resulting in pathologic epileptiform activity could hinder the production of sleep spindles, a brain rhythm essential for memory processes. Despite this pathophysiologic connection, the relationship between spindles and cognitive symptoms in epileptic encephalopathies has not been previously evaluated. A significant challenge limiting such work has been the poor performance of available automated spindle detection methods in the setting of sharp activities, such as epileptic spikes. Here, we validate a robust new method to accurately measure sleep spindles in patients with epilepsy. We then apply this detector to a prospective cohort of male and female children with CECTS with combined high-density EEGs during sleep and cognitive testing at varying time points of disease. We show that: (1) children have a transient, focal deficit in spindles during the symptomatic phase of disease; (2) spindle rate anticorrelates with spike rate; and (3) spindle rate, but not spike rate, predicts performance on cognitive tasks. These findings demonstrate focal thalamocortical circuit dysfunction and provide a pathophysiological explanation for the shared seizures and cognitive symptoms in CECTS. Further, this work identifies sleep spindles as a potential treatment target of cognitive dysfunction in this common epileptic encephalopathy.SIGNIFICANCE STATEMENT Childhood epilepsy with centrotemporal spikes is the most common idiopathic focal epilepsy syndrome, characterized by self-limited focal seizures and cognitive symptoms. Here, we provide the first evidence that focal thalamocortical circuit dysfunction underlies the shared seizures and cognitive dysfunction observed. In doing so, we identify sleep spindles as a mechanistic biomarker, and potential treatment target, of cognitive dysfunction in this common developmental epilepsy and provide a novel method to reliably quantify spindles in brain recordings from patients with epilepsy.


Assuntos
Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Epilepsias Parciais/fisiopatologia , Sono/fisiologia , Tálamo/fisiopatologia , Adolescente , Criança , Pré-Escolar , Disfunção Cognitiva/etiologia , Eletroencefalografia , Epilepsias Parciais/complicações , Feminino , Humanos , Masculino , Vias Neurais/fisiopatologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31262708

RESUMO

BACKGROUND: Converging evidence implicates abnormal thalamocortical interactions in the pathophysiology of schizophrenia. This evidence includes consistent findings of increased resting-state functional connectivity of the thalamus with somatosensory and motor cortex during wake and reduced spindle activity during sleep. We hypothesized that these abnormalities would be correlated, reflecting a common mechanism: reduced inhibition of thalamocortical neurons by the thalamic reticular nucleus (TRN). The TRN is the major inhibitory nucleus of the thalamus and is abnormal in schizophrenia. Reduced TRN inhibition would be expected to lead to increased and less filtered thalamic relay of sensory and motor information to the cortex during wake and reduced burst firing necessary for spindle initiation during sleep. METHODS: Overnight polysomnography and resting-state functional connectivity magnetic resonance imaging were performed in 26 outpatients with schizophrenia and 30 demographically matched healthy individuals. We examined the relations of sleep spindle density during stage 2 non-rapid eye movement sleep with connectivity of the thalamus to the cortex during wakeful rest. RESULTS: As in prior studies, patients with schizophrenia exhibited increased functional connectivity of the thalamus with bilateral somatosensory and motor cortex and reduced sleep spindle density. Spindle density inversely correlated with thalamocortical connectivity, including in somotosensory and motor cortex, regardless of diagnosis. CONCLUSIONS: These findings link two biomarkers of schizophrenia-the sleep spindle density deficit and abnormally increased thalamocortical functional connectivity-and point to deficient TRN inhibition as a plausible mechanism. If TRN-mediated thalamocortical dysfunction increases risk for schizophrenia and contributes to its manifestations, understanding its mechanism could guide the development of targeted interventions.


Assuntos
Córtex Cerebral/fisiopatologia , Esquizofrenia/fisiopatologia , Sono/fisiologia , Tálamo/fisiopatologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiopatologia , Polissonografia
6.
Schizophr Bull ; 39(5): 1077-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22987296

RESUMO

There is considerable evidence implicating brain white matter (WM) abnormalities in the pathophysiology of schizophrenia; however, the spatial localization of WM abnormalities reported in the existing studies is heterogeneous. Thus, the goal of this study was to quantify the spatial characteristics of WM abnormalities in schizophrenia. One hundred and fourteen patients with schizophrenia and 138 matched controls participated in this multisite study involving the Universities of Iowa, Minnesota, and New Mexico, and the Massachusetts General Hospital. We measured fractional anisotropy (FA) in brain WM regions extracted using 3 different image-processing algorithms: regions of interest, tract-based spatial statistics, and the pothole approach. We found that FA was significantly lower in patients using each of the 3 image-processing algorithms. The region-of-interest approach showed multiple regions with lower FA in patients with schizophrenia, with overlap at all 4 sites in the corpus callosum and posterior thalamic radiation. The tract-based spatial statistic approach showed (1) global differences in 3 of the 4 cohorts and (2) lower frontal FA at the Iowa site. Finally, the pothole approach showed a significantly greater number of WM potholes in patients compared to controls at each of the 4 sites. In conclusion, the spatial characteristics of WM abnormalities in schizophrenia reflect a combination of a global low-level decrease in FA, suggesting a diffuse process, coupled with widely dispersed focal reductions in FA that vary spatially among individuals (ie, potholes).


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Leucoencefalopatias/patologia , Esquizofrenia/patologia , Adulto , Anisotropia , Estudos de Coortes , Corpo Caloso/patologia , Imagem de Tensor de Difusão/instrumentação , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Tálamo/patologia , Adulto Jovem
7.
Hum Brain Mapp ; 30(11): 3795-811, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19434601

RESUMO

Deficits in working memory (WM) are a consistent neurocognitive marker for schizophrenia. Previous studies have suggested that WM is the product of coordinated activity in distributed functionally connected brain regions. Independent component analysis (ICA) is a data-driven approach that can identify temporally coherent networks that underlie fMRI activity. We applied ICA to an fMRI dataset for 115 patients with chronic schizophrenia and 130 healthy controls by performing the Sternberg Item Recognition Paradigm. Here, we describe the first results using ICA to identify differences in the function of WM networks in schizophrenia compared to controls. ICA revealed six networks that showed significant differences between patients with schizophrenia and healthy controls. Four of these networks were negatively task-correlated and showed deactivation across the posterior cingulate, precuneus, medial prefrontal cortex, anterior cingulate, inferior parietal lobules, and parahippocampus. These networks comprise brain regions known as the default-mode network (DMN), a well-characterized set of regions shown to be active during internal modes of cognition and implicated in schizophrenia. Two networks were positively task-correlated, with one network engaging WM regions such as bilateral DLPFC and inferior parietal lobules while the other network engaged primarily the cerebellum. Our results suggest that DLPFC dysfunction in schizophrenia might be lateralized to the left and intrinsically tied to other regions such as the inferior parietal lobule and cingulate gyrus. Furthermore, we found that DMN dysfunction in schizophrenia exists across multiple subnetworks of the DMN and that these subnetworks are individually relevant to the pathophysiology of schizophrenia. In summary, this large multisite study identified multiple temporally coherent networks, which are aberrant in schizophrenia versus healthy controls and suggests that both task-correlated and task-anticorrelated networks may serve as potential biomarkers.


Assuntos
Encéfalo/fisiopatologia , Transtornos da Memória/etiologia , Memória de Curto Prazo/fisiologia , Modelos Neurológicos , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/complicações , Estimulação Acústica/métodos , Adulto , Análise de Variância , Encéfalo/irrigação sanguínea , Mapeamento Encefálico , Análise Discriminante , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Vias Neurais/irrigação sanguínea , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Oxigênio/sangue , Córtex Pré-Frontal/irrigação sanguínea , Análise de Componente Principal , Escalas de Graduação Psiquiátrica , Tempo de Reação/fisiologia , Adulto Jovem
8.
Brain ; 127(Pt 8): 1706-16, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15215211

RESUMO

It has been hypothesized that social developmental disorders (SDD) like autism, Asperger's disorder and the social-emotional processing disorder may be associated with prosopagnosic-like deficits in face recognition. We studied the ability to recognize famous faces in 24 adults with a variety of SDD diagnoses. We also measured their ability to discriminate changes in internal facial configuration, a perceptual function that is important in face recognition, and their imagery for famous faces, an index of their facial memory stores. We contrasted their performance with both healthy subjects and prosopagnosic patients. We also performed a cluster analysis of the SDD patients. One group of eight SDD subjects performed normally on all tests of face perception and recognition. The other 16 subjects were impaired in recognition, though most were better than prosopagnosic patients. One impaired SDD subgroup had poor perception of facial structure but relatively preserved imagery, resembling prosopagnosic patients with medial occipitotemporal lesions. Another subgroup had better perception than imagery, resembling one prosopagnosic with bilateral anterior temporal lesions. Overall, SDD subgroup membership by face recognition did not correlate with a particular SDD diagnosis or subjective ratings of social impairment. We conclude that the social disturbance in SDD does not invariably lead to impaired face recognition. Abnormal face recognition in some SDD subjects is related to impaired perception of facial structure in a manner suggestive of occipitotemporal dysfunction. Heterogeneity in the perceptual processing of faces may imply pathogenetic heterogeneity, with important implications for genetic and rehabilitative studies of SDD.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/psicologia , Prosopagnosia/psicologia , Reconhecimento Psicológico , Percepção Social , Adolescente , Adulto , Síndrome de Asperger/psicologia , Transtorno Autístico/psicologia , Criança , Análise por Conglomerados , Expressão Facial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos
9.
Neuroimage ; 20(3): 1670-84, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14642477

RESUMO

This study describes the neural circuitry underlying temporally separated components of working memory (WM) performance-stimulus encoding, maintenance of information during a delay, and the response to a probe. While other studies have applied event-related fMRI to separate epochs of WM tasks, this study differs in that it employs a methodology that does not make any a priori assumptions about the shape of the hemodynamic response (HDR). This is important because no one model of the HDR is valid across the range of activated brain regions and stimulus types. Systematic modeling inaccuracies may lead to the misattribution of activity to adjacent events. Twelve healthy subjects performed a numerical version of the Sternberg Item Recognition Paradigm adapted for rapid presentation event-related fMRI. This paradigm emphasized maintenance rather than manipulative WM processes and used a subcapacity WM load. WM trials with different delay lengths were compared to fixation. The HDR of the entire WM trial for each trial type was estimated using a finite impulse response (FIR). Regional activity associated with the Encode, Delay, and Probe epochs was identified using contrasts that were based on the FIR estimates and by examining the HDRs. Each epoch was associated with a distinct but overlapping pattern of regional activity. Activation of the dorsolateral prefrontal cortex, thalamus, and basal ganglia was exclusively associated with the probe. This suggests that frontostriatal neural circuitry participates in selecting an appropriate response based on the contents of WM.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo/fisiologia , Adulto , Circulação Cerebrovascular/fisiologia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Modelos Lineares , Masculino , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Tálamo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA