Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 277: 111480, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045647

RESUMO

A halotolerant strain CO100 of Staphylococcus sp. was isolated from contaminated sediments taken from the fishing harbour of Sfax, Tunisia, as an efficient hydrocarbonoclastic candidate. Strain CO100 exhibited a high capacity to break down almost 72% of the aliphatic hydrocarbons contained in crude oil (1%, v/v), used as the sole carbon and energy source, after 20 days of culture, at 100 g/l NaCl, 37 °C and 180 rpm. The isolate CO100 displayed also its ability to grow on phenanthrene, fluoranthene and pyrene (100 mg/l), at 100 g/l NaCl. Moreover, the isolate CO100 showed a notable aptitude to synthesize an efficient tensioactive agent namely BS-CO100, on low-value substrates including residual frying oil and expired milk powder, thus reducing the high cost of biosurfactant production. The ESI/MS analysis designated that BS-CO100 belonged to lipopeptide class, in particular lichenysin and iturine members. Critical micelle concentrations of BS-CO100 were varying between 65 and 750 mg/l, depending on of the purity of the biosurfactant and the used carbon sources. BS-CO100 showed a high steadiness against a wide spectrum of pH (4.3-12), temperature (4-121 °C) and salinity (0-300 g/l NaCl), supporting its powerful tensioactive properties under various environmental conditions. Likewise, BS-CO100 exhibited no cytotoxic effect toward human HEK293 cells, at concentrations within 125 and 1000 µg/ml. Furthermore, the biosurfactant BS-CO100 exhibited remarkable anti-adhesive and anti-biofilm activities, being able to avoid and disrupt the biofilm formation by certain pathogenic microorganisms. In addition, BS-CO100 was found to have more potential to remove hydrocarbons from contaminated soils, compared to some chemical surfactants. In light of these promising findings, strain CO100, as well as its biosurfactant, could be successfully used in different biotechnological applications including the bioremediation of oil-polluted areas, even under saline conditions.


Assuntos
Petróleo , Staphylococcus , Biodegradação Ambiental , Células HEK293 , Humanos , Hidrocarbonetos , Tensoativos , Tunísia
2.
Ecotoxicol Environ Saf ; 167: 441-449, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384057

RESUMO

This work aimed at studying the potential of a new hydrocarbonoclastic marine bacterium, Bacillus stratosphericus FLU5, to produce an efficient surface-active agent BS-FLU5. Biosurfactant production was examined on different carbon sources; using the surface tension measurement and the oil displacement test. Strain FLU5 showed its capacity to produce biosurfactants from all tested substrates, in particular the residual frying oil, which is a cheap renewable carbon source alternative, thus minimizing the high cost of producing those surfactants. MALDI-TOF MS/MS analysis confirmed the presence of lipopeptides, which are identified as members of surfactin and pumilacidin series. The critical micelle concentration (CMC) of the purified lipopeptides produced by strain FLU5 was 50 mg/l. At this concentration, the surface tension of the water was reduced from 72 to 28 mN/m. Furthermore, the crude lipopeptides showed an interesting stability against a broad range of pH, temperature and salinity. In addition, the application of BS-FLU5 in oil recovery from hydrocarbons-contaminated soil (used motor oil) showed that it was more effective on the hydrocarbon-remobilization than some tested synthetic surfactants. Interestingly, the biosurfactant BS-FLU5 showed a negligible cytotoxic effect against the mammalian cells HEK293. These results highlight the applicability of the lipopeptides BS-FLU5 in different fields, especially in environmental remediation processes.


Assuntos
Bacillus/metabolismo , Lipopeptídeos/biossíntese , Tensoativos/metabolismo , Biodegradação Ambiental , Biotecnologia , Poluentes Ambientais/isolamento & purificação , Células HEK293 , Humanos , Hidrocarbonetos , Concentração de Íons de Hidrogênio , Micelas , Petróleo , Salinidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Temperatura
3.
Langmuir ; 33(38): 9997-10005, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28885026

RESUMO

Lichenysins produced by Bacillus licheniformis are anionic lipopeptide biosurfactants with cytotoxic, antimicrobial, and hemolytic activities that possess enormous potential for chemical and biological applications. Through the use of physical techniques such as differential scanning calorimetry, small- and wide-angle X-ray diffraction, and Fourier-transform infrared spectroscopy as well as molecular dynamics simulations, we report on the interaction of Lichenysin with synthetic phosphatidylcholines differing in hydrocarbon chain length. Lichenysin alters the thermotropic phase behavior of phosphatidylcholines, displaying fluid-phase immiscibility and showing a preferential partitioning into fluid domains. The interlamellar repeat distance of dipalmitoylphosphatidylcholine (DPPC) is modified, affecting both the phospholipid palisade and the lipid/water interface, which also experiences a strong dehydration. Molecular dynamics confirms that Lichenysin is capable of interacting both with the hydrophobic portion of DPPC and with the polar headgroup region, which is of particular relevance to explain much of its properties. The results presented here help to establish a molecular basis for the Lichenysin-induced perturbation of model and biological membranes previously described in the literature.


Assuntos
Lipopeptídeos/química , 1,2-Dipalmitoilfosfatidilcolina , Varredura Diferencial de Calorimetria , Membrana Celular , Lecitinas , Bicamadas Lipídicas , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Colloids Surf B Biointerfaces ; 149: 38-47, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27718395

RESUMO

Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C3(LA)2) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C3(LA)2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy.


Assuntos
Antibacterianos/farmacologia , Bacillus licheniformis/química , Membrana Celular/efeitos dos fármacos , Lipoproteínas/farmacologia , Peptídeos Cíclicos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Tensoativos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus licheniformis/metabolismo , Membrana Celular/ultraestrutura , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Citometria de Fluxo , Lipoproteínas/química , Lipoproteínas/isolamento & purificação , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Listeria monocytogenes/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Potássio/metabolismo , Eletricidade Estática , Tensoativos/química , Tensoativos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA