Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Funct ; 15(5): 2497-2523, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334749

RESUMO

The lack of studies evaluating the chemical responses of kombucha microorganisms when exposed to plants is notable in the literature. Therefore, this work investigates the chemical behaviour of 7-, 14- and 21 day-fermentation of kombucha derived from three extracts obtained from banana inflorescence, black tea, and grape juice. After the acquisition of UPLC-ESI-MS data, GNPS molecular networking, MS-Dial, and MS-Finder were used to chemically characterize the samples. The microbial chemical responses were enzymatic hydrolysis, oxidation, and biosynthesis. The biosynthesis was different among the kombucha samples. In fermented black tea, gallic and dihydrosinapic acids were found as hydrolysis products alongside a sugar-derived product namely 7-(α-D-glucopyranosyloxy)-2,3,4,5,6-pentahydroxyheptanoic acid. The sphingolipids, safingol and cedefingol alongside capryloyl glycine and palmitoyl proline were identified. In fermented grapes, sugar degradation and chemical transformation products were detected together with three cell membrane hopanoids characterized as hydroxybacteriohopanetetrol cyclitol ether, (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol ether, and methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol. The fermented banana blossom showed the presence of methyl (Δ6 or Δ11)-hydroxybacteriohopanetetrol cyclitol together with sphingofungin B, sphinganine and other fatty acid derivatives. Parts of these samples were tested for their inhibition against α-glucosidase and their antioxidant effects. Except for the 14-day fermented extracts, other black tea extracts showed significant inhibition of α-glucosidase ranging from 42.5 to 42.8%. A 14-day fermented extract of the banana blossom infusion showed an inhibition of 29.1%, while grape samples were less active than acarbose. The 21-day fermented black tea extract showed moderate antioxidant properties on a DPPH-based model with an EC50 of 5.29 ± 0.10 µg mL-1, while the other extracts were weakly active (EC50 between 80.76 and 168.12 µg mL-1).


Assuntos
Camellia sinensis , Ciclitóis , Musa , Vitis , Chá/química , Vitis/metabolismo , Musa/metabolismo , Fermentação , alfa-Glucosidases/metabolismo , Camellia sinensis/metabolismo , Antioxidantes/metabolismo , Flores/química , Açúcares , Extratos Vegetais/farmacologia , Éteres
2.
Fitoterapia ; 173: 105784, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38128621

RESUMO

The SARS-CoV-2 mutation and the limitation of the approved drug against COVID-19 are still a challenge in many country healthcare systems and need to be affronted despite the set of vaccines to prevent this viral infection. To contribute to the identification of new antiviral agents, the present study focused on natural products from an edible fruit with potential inhibitory effects against the SARS-CoV-2 main protease (Mpro). First, LC-ESIMS analysis of Platonia insignis fruits was performed and showed the presence of biflavonoids and benzophenones in the seed and pulp, respectively. Then, maceration and chromatographic purification led to the identification of two triglycerides (1 and 2) alongside chamaejasmine (3) and volkensiflavone (4) from the seed and isogarcinol (5) and cycloxanthochymol (6), from the pulp. Compounds 1-6 after evaluating their inhibitory against Mpro, displayed from no to significant activity. Compound 5 was the most potent with an IC50 value of 0.72 µM and was more active than the positive control, Ebselen (IC50 of 3.4 µM). It displayed weak and no cytotoxicity against THP-1 (CC50 of 116.2 µM) and Vero cell lines, respectively. Other active compounds showed no cytotoxicity against THP-1. and Vero cell lines. Molecular docking studies revealed interactions in the catalytic pocket between compound 5 and amino acid residues that composed the catalytic dyads (His 41 and Cyst 145).


Assuntos
Biflavonoides , Frutas , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Benzofenonas , Biflavonoides/farmacologia , Estrutura Molecular , Peptídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA