Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Prolif ; 56(5): e13473, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37199072

RESUMO

Cancer cell spheroids have been shown to mimic in vivo tumour microenvironment and are therefore suitable for in vitro drug screening. Microfluidic technology can provide conveniences for spheroid assays such as high-throughput, simplifying manual operation and saving reagent. Here, we propose a concentration gradient generator based on microfluidic technology for cell spheroid culture and assay. The chip consists of upper microchannels and lower microwells. After partitioning HepG2 suspension into the microwells with concave and non-adhesive bottoms, spheroids can spontaneously form. By controlling the fluid replacement and flow in microchannels, the doxorubicin solution is diluted automatically into a series of concentration gradients, which spanning more than one order of magnitude. And then the effect of doxorubicin on spheroids is measured in situ by fluorescent staining. This chip provides a very promising approach to achieve the high-throughput and standardized anti-cancer drug screening in future.


Assuntos
Antineoplásicos , Esferoides Celulares , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Doxorrubicina/farmacologia
2.
Biosens Bioelectron ; 137: 140-147, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096080

RESUMO

We propose the first black phosphorus (BP) - fiber optic biosensor for ultrasensitive diagnosis of human neuron-specific enolase (NSE) cancer biomarkers. A novel optical-nano configuration has been exploited by integrating BP nanosheets with a largely tilted fiber grating (BP-TFG), where the BP is bio-functionalized by the poly-L-lysine acting as a critical cross-linker to facilitate bio-nano-photonic interface with extremely enhanced light-matter interaction. BP nanosheets are synthesized by a liquid ultrasonication-based exfoliation and deposited on fiber device by an in-situ layer-by-layer method. The BP-induced optical modulation effects in terms of thickness-tunable feature, polarization-dependence and enhanced light-matter interaction are experimentally investigated. The anti-NSE immobilized BP-TFG biosensor has been implemented to detect NSE biomarkers demonstrating ultrahigh sensitivity with limit of detection down to 1.0 pg/mL, which is 4 orders magnitude lower than NSE cut-off value of small cell lung cancer. The enhanced sensitivity of BP-TFG is 100-fold higher than graphene oxide or AuNPs based biosensors. We believe that BP-fiber optic configuration opens a new bio-nano-photonic platform for the applications in healthcare, biomedical, food safety and environmental monitoring.


Assuntos
Biomarcadores Tumorais/isolamento & purificação , Técnicas Biossensoriais , Neoplasias/diagnóstico , Fosfopiruvato Hidratase/isolamento & purificação , Biomarcadores Tumorais/química , Tecnologia de Fibra Óptica , Ouro/química , Grafite/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Fosfopiruvato Hidratase/química , Fósforo/química
3.
Nano Lett ; 13(9): 4123-30, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23937430

RESUMO

Herein, we describe a novel approach for rapid, label-free and specific DNA detection by applying rolling circle amplification (RCA) based on silicon nanowire field-effect transistor (SiNW-FET) for the first time. Highly responsive SiNWs were fabricated with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for hybrid method. The probe DNA was immobilized on the surface of SiNW, followed by sandwich hybridization with the perfectly matched target DNA and RCA primer that acted as a primer to hybridize the RCA template. The RCA reaction created a long single-stranded DNA (ssDNA) product and thus enhanced the electronic responses of SiNW significantly. The signal-to-noise ratio (SNR) as a figure-of-merit was analyzed to estimate the signal enhancement and possible detection limit. The nanosensor showed highly sensitive concentration-dependent conductance change in response to specific target DNA sequences. Because of the binding of an abundance of repeated sequences of RCA products, the SNR of >20 for 1 fM DNA detection was achieved, implying a detection floor of 50 aM. This RCA-based SiNW biosensor also discriminated perfectly matched target DNA from one-base mismatched DNA with high selectivity due to the substantially reduced nonspecific binding onto the SiNW surface through RCA. The combination of SiNW FET sensor with RCA will increase diagnostic capacity and the ability of laboratories to detect unexpected viruses, making it a potential tool for early diagnosis of gene-related diseases.


Assuntos
Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/isolamento & purificação , Nanofios/química , Vírus/isolamento & purificação , Replicação do DNA , DNA de Cadeia Simples/química , Razão Sinal-Ruído , Silício/química , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA