Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(15): 8595-8605, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38591744

RESUMO

The nutritional composition of the diet significantly impacts the overall growth and development of weaned piglets. The current study aimed to explore the effects and underlying mechanisms of dietary tryptophan consumption on muscle fiber type transformation during the weaning period. Thirty weaned piglets with an average body weight of 6.12 ± 0.16 kg were randomly divided into control (CON, 0.14% Trp diet) and high Trp (HT, 0.35% Trp) groups and maintained on the respective diet for 28 days. The HT group of weaned piglets exhibited highly significant improvements in growth performance and an increased proportion of fast muscle fibers. Transcriptome sequencing revealed the potential contribution of differentially expressed circular RNAs toward the transformation of myofiber types in piglets and toward the regulation of expression of related genes by targeting the microRNAs, miR-34c and miR-182, to further regulate myofiber transformation. In addition, 145 DE circRNAs were identified as potentially protein-encoding, with the encoded proteins associated with a myofiber type transformation. In conclusion, the current study greatly advances and refines our current understanding of the regulatory networks associated with piglet muscle development and myofiber type transformation and also contributes to the optimization of piglet diet formulation.


Assuntos
MicroRNAs , Triptofano , Animais , Suínos/genética , Triptofano/metabolismo , Desmame , RNA Circular/genética , Suplementos Nutricionais , Dieta/veterinária , MicroRNAs/genética
2.
Theranostics ; 10(9): 4073-4087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226540

RESUMO

Uncontrollable cell proliferation and irreversible neurological damage make glioma one of the most deadly diseases in clinic. Besides the multiple biological barriers, glioma stem cells (GSCs) that are responsible for the maintenance and recurrence of tumor tissues also hinder the therapeutic efficacy of chemotherapy. Therefore, all-stage precisional glioma targeted therapy regimens that could efficiently deliver drugs to glioma cells and GSCs after overcoming multiple barriers have received increasing scrutiny. Methods: A polymeric micelle-based drug delivery system was developed by modifying a "Y-shaped" well-designed ligand of both GRP78 protein and quorum sensing receptor to achieve all-stage precisional glioma targeting, then we evaluated the targeting ability and barrier penetration ability both in vitro and in vivo. In order to achieve all-stage precisional therapy, we need kill both GSCs and glioma related cells. Parthenolide (PTL) has been investigated for its selective toxicity to glioma stem cells while Paclitaxel (PTX) and Temozolomide (TMZ) are widely used in experimental and clinical therapy of glioma respectively. So the in vivo anti-glioma effect of combination therapy was evaluated by Kaplan-Meier survival analysis and immunohistochemical (IHC) examination of tumor tissues. Results: The "Y-shaped" well-designed peptide, termed DWVAP, exhibited excellent glioma (and GSCs) homing and barrier penetration ability. When modified on micelle surface, DWVAP peptide significantly enhanced accumulation of micelles in brain and glioma. In addition, DWVAP micelles showed no immunogenicity and cytotoxicity, which could guarantee their safety when used in vivo. Treatment of glioma-bearing mice with PTL loaded DWVAP modified PEG-PLA micelles plus PTX loaded DWVAP modified PEG-PLA micelles or PTL loaded DWVAP modified PEG-PLA micelles plus TMZ showed improved anti-tumor efficacy in comparison to PTL and PTX loaded unmodified micelles or PTL loaded unmodified micelles plus TMZ. Conclusion: Combination of all-stage targeting strategy and concomitant use of chemotherapeutics and stem cell inhibitors could achieve precise targeted therapy for glioma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/uso terapêutico , Glioma/tratamento farmacológico , Paclitaxel/administração & dosagem , Temozolomida/administração & dosagem , Animais , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Micelas , Peptídeos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Ratos Sprague-Dawley , Sesquiterpenos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA