Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 28(9-10): 1469-1483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37354317

RESUMO

It is essential to further characterize liver injury aimed at developing novel therapeutic approaches. This study investigated the mechanistic basis of genipin against carbon tetrachloride (CCl4)-triggered acute liver injury concerning ferroptosis, a novel discovered modality of regulated cell death. All experiments were performed using hepatotoxic models upon CCl4 exposure in mice and human hepatocytes in vitro. Immunohistochemistry, immunoblotting, molecular docking, RNA-sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were conducted. CCl4 intoxication was manifested with lipid peroxidation-dictated ferroptotic cell death, together with changes in a cascade of ferroptosis-associated events and several regulatory pathways. Both the administration of genipin and ferrostatin-1 (Fer-1) significantly prevented this hepatotoxicity in response to CCl4 intoxication via upregulating GPX4 and xCT (i.e., critical regulators of ferroptosis). RNA-sequencing unraveled that arachidonic acid metabolism was considerably influenced upon genipin treatment. Accordingly, genipin treatment attenuated arachidonate 15-lipoxygenase (ALOX15)-launched lipid peroxidation in terms of UHPLC-MS/MS analysis and inflammation. In vitro, genipin supplementation rescued erastin-induced hepatocellular inviability and lipid ROS accumulation. The siRNA knockdown of GPX4 partially abrogated the protective effects of genipin on erastin-induced cytotoxicity, whereas the cytotoxicity was less severe in the presence of diminished ALOX15 expression in L-O2 cells. In conclusion, our findings uncovered that genipin treatment protects against CCl4-triggered acute liver injury by abrogating hepatocyte ferroptosis, wherein the pharmacological modification of dysregulated GPX4 and ALOX15-launched lipid peroxidation was responsible for underlying medicinal effects as molecular basis.

2.
Biol Trace Elem Res ; 201(7): 3202-3209, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36136288

RESUMO

The associations of circulating trace elements with sleep health have attracted increasing attention given their potential link. However, there is scant data on the relationship between serum trace elements and abnormal sleep duration patterns in cirrhosis. We aimed to investigate these associations with the purpose of identifying modifiable risk factors. The blood samples were collected from inpatients with cirrhosis, and serum levels of several trace elements were assessed by inductively coupled plasma mass spectrometry. Self-reported sleep duration was categorized to short- (< 7 h/night), optimal (7-8 h/night), and long-sleep duration (> 8 h/night). The dose-response trends and associations of trace elements levels with sleep duration were determined by restricted cubic splines (RCS) and logistic regression, respectively. Cirrhotic patients with optimal sleep duration experienced the highest levels of serum Zinc (Zn) and the lowest values of copper to zinc ratio (CZr). RCS model corroborated non-linear associations of serum Zn and CZr against sleep duration. Multiple regression analysis showed that both CZr (short vs optimal sleep duration: OR 4.785, P < 0.001; long vs optimal sleep duration: OR 4.150, P = 0.019) and serum Zn levels (short vs optimal sleep duration: OR 0.985, P = 0.040; long vs optimal sleep duration: OR 0.956, P = 0.008) serve as independent risk factors for sleep duration abnormalities. In conclusion, our findings unraveled a close relationship of serum Zn and CZr with sleep duration in cirrhosis. Further trace element-based therapy such as Zn supplementation may be novel approach to reverse this sleep problem.


Assuntos
Oligoelementos , Humanos , Cobre , Duração do Sono , Zinco , Cirrose Hepática
3.
Int Immunopharmacol ; 91: 107308, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33383448

RESUMO

Bicyclol, an innovative chemical drug with proprietary intellectual property rights in China, is based on derivative of traditional Chinese medicine (TCM) Schisandra chinensis (Wuweizi) of North. Mounting data has proved that bicyclol has therapeutic potential in various pathological conditions in liver. In this narrative review, we provide the first summary of pharmacological activities, pharmacokinetic characteristics and toxicity of bicyclol, and discuss future research perspectives. Our results imply that bicyclol has a wide spectrum of pharmacological properties, including anti-viral, anti-inflammatory, immuno-regulatory, anti-oxidative, antisteatotic, anti-fibrotic, antitumor, cell death regulatory effects and modulation of heat shock proteins. Pharmacokinetic studies have indicated that bicyclol is the main substrate of CYP3A/2E1. Additionally, no obvious drug interactions have been found when bicyclol is administered simultaneously with other prescriptions. Furthermore, the results of chronic toxicity have strongly addressed that bicyclol has no noticeable toxic effects on all biochemical indices and pathological examinations of the main organs. In view of good pharmacological actions and safety, bicyclol is anticipated to be a potential candidate for various liver diseases, including acute liver injury, fulminant hepatitis, non-alcoholic fatty liver disease, fibrosis and hepatocellular carcinoma. Further studies are therefore required to delineate its molecular mechanisms and targets to confer this well-designed drug a far greater potency. We hope that bicyclol-based therapeutics for liver diseases might be broadly used in clinical practice worldwide.


Assuntos
Compostos de Bifenilo/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Medicina Tradicional Chinesa , Animais , Compostos de Bifenilo/efeitos adversos , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/farmacocinética , Medicamentos de Ervas Chinesas/efeitos adversos , Medicamentos de Ervas Chinesas/farmacocinética , Humanos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/diagnóstico , Hepatopatias/imunologia , Hepatopatias/metabolismo , Resultado do Tratamento
4.
Pharmacol Res ; 160: 105170, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32877694

RESUMO

Scoparone is an active and efficious ingredient of herbal medicine Artemisia capillaris Thunb, which has been used clinically in traditional Chinese medicine formula (e.g. Yin-Chen-Hao decoction) for the treatment of hepatic dysfunction, cholestasis and jaundice for over thousand years. More recently, scoparone has received increasing attention due to its multiple properties. In this comprehensive review, we provide the first summary of the pharmacological effects and pharmacokinetic characteristics of scoparone, and discuss future research prospects. The results implicated that scoparone possesses a wide spectrum of pharmacological activities, including anti-inflammatory, antioxidant, anti-apoptotic, anti-fibrotic and hypolipidemic properties. Pharmacokinetic studies have addressed that isoscopoletin and scopoletin are major primary metabolites of scoparone. Moreover, hepatic dysfunction might promote bioavailability of scoparone due to limited intrinsic clearance. On the other hand, the bioavailability of multi-component including scoparone in certain TCM formula can also be enhanced by applying this formula at a high dose on account of their interacted effects. In view of good pharmacological actions, scoparone is anticipated to be a potential drug candidate for various liver diseases, such as acute liver injury, fulminant hepatitis, alcohol-induced hepatotoxicity, non-alcoholic fatty liver disease and fibrosis. However, further studies are warranted to clarify its molecular mechanisms and targets, elucidate its toxicity, and identify its interplay with other active ingredients of classical TCM formula in clinical settings.


Assuntos
Cumarínicos/uso terapêutico , Hepatopatias/tratamento farmacológico , Animais , Artemisia/química , Cumarínicos/farmacocinética , Cumarínicos/farmacologia , Medicamentos de Ervas Chinesas , Humanos , Fígado/efeitos dos fármacos , Hepatopatias/genética , Medicina Tradicional Chinesa , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética
5.
Pharmacol Res ; 159: 104945, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454225

RESUMO

Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis. For decades, genipin is the focus of studies as a versatile compound in the treatment of various pathogenic conditions. In particularly, Gardenia jasminoides Ellis has long been used in traditional Chinese medicine for the prevention and treatment of liver disease. Mounting experimental data has proved genipin possesses therapeutic potential for cholestatic, septic, ischemia/reperfusion-triggered acute liver injury, fulminant hepatitis and NAFLD. This critical review is a reflection on the valuable lessons from decades of research regarding pharmacological activities of genipin. Of note, genipin represents choleretic effect by potentiating bilirubin disposal and enhancement of genes in charge of the efflux of a number of organic anions. The anti-inflammatory capability of genipin is mediated by suppression of the production and function of pro-inflammatory cytokines and inflammasome. Moreover, genipin modulates various transcription factor and signal transduction pathway. Genipin appears to trigger the upregulation of several key genes encoding antioxidant and xenobiotic-metabolizing enzymes. Furthermore, the medicinal impact of genipin extends to modulation of regulated cell death, including autophagic cell death, apoptosis, necroptosis and pyroptosis, and modulation of quality of cellular organelle. Another crucial effect of genipin appears to be linked to dual role in targeting uncoupling protein 2 (UCP2). As a typical UCP2-inhibiting compound, genipin could inhibit AMP-activated protein kinase or NF-κB in circumstance. On the contrary, reactive oxygen species production and cellular lipid deposits mediated by genipin through the upregulation of UCP2 is observed in liver steatosis, suggesting the precise role of genipin is disease-specific. Collectively, we comprehensively summarize the mechanisms and pathways associated with the hepatoprotective activity of genipin and discuss potential toxic impact. Notably, our focus is the direct medicinal effect of genipin itself, whereas its utility as a crosslinking agent in tissue engineering is out of scope for the current review. Further studies are therefore required to disentangle these complicated pharmacological properties to confer this natural agent a far greater potency.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colagogos e Coleréticos/farmacologia , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Necrose Hepática Massiva/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Anti-Inflamatórios/toxicidade , Antioxidantes/toxicidade , Morte Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colagogos e Coleréticos/toxicidade , Humanos , Iridoides/toxicidade , Fígado/metabolismo , Fígado/patologia , Necrose Hepática Massiva/metabolismo , Necrose Hepática Massiva/patologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteína Desacopladora 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA