Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 60(2): 167-77, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26607298

RESUMO

Leiomyosarcoma (LMS) represents a highly malignant, rare soft tissue sarcoma with high rates of morbidity and mortality. Previously, we demonstrated that tissue-isolated human LMS xenografts perfused in situ are highly sensitive to the direct anticancer effects of physiological nocturnal blood levels of melatonin which inhibited tumour cell proliferative activity, linoleic acid (LA) uptake and metabolism to 13-hydroxyoctadecadienoic acid (13-HODE). Here, we show the effects of low pharmacological blood concentrations of melatonin following oral ingestion of a melatonin supplement by healthy adult human female subjects on tumour proliferative activity, aerobic glycolysis (Warburg effect) and LA metabolic signalling in tissue-isolated LMS xenografts perfused in situ with this blood. Melatonin markedly suppressed aerobic glycolysis and induced a complete inhibition of tumour LA uptake, 13-HODE release, as well as significant reductions in tumour cAMP levels, DNA content and [(3) H]-thymidine incorporation into DNA. Furthermore, melatonin completely suppressed the phospho-activation of ERK 1/2, AKT, GSK3ß and NF-kB (p65). The addition of S20928, a nonselective melatonin antagonist, reversed these melatonin inhibitory effects. Moreover, in in vitro cell culture studies, physiological concentrations of melatonin repressed cell proliferation and cell invasion. These results demonstrate that nocturnal melatonin directly inhibited tumour growth and invasion of human LMS via suppression of the Warburg effect, LA uptake and other related signalling mechanisms. An understanding of these novel signalling pathway(s) and their association with aerobic glycolysis and LA metabolism in human LMS may lead to new circadian-based therapies for the prevention and treatment of LMS and potentially other mesenchymally derived solid tumours.


Assuntos
Glicólise/efeitos dos fármacos , Leiomiossarcoma/tratamento farmacológico , Melatonina/metabolismo , Animais , Sobrevivência Celular , Feminino , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Metástase Neoplásica , Ratos , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Integr Cancer Ther ; 8(4): 337-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20050373

RESUMO

The authors have shown that, via activation of its MT1 receptor, melatonin modulates the transcriptional activity of various nuclear receptors and the proliferation of both ER alpha+ and ER alpha- human breast cancer cells. Employing dominant-negative (DN) and dominant-positive (DP) G proteins, it was demonstrated that G alpha i2 proteins mediate the suppression of estrogen-induced ER alpha transcriptional activity by melatonin, whereas the G alpha q proteins mediate the enhancement of retinoid-induced RAR alpha transcriptional activity by melatonin. In primary human breast tumors, the authors' studies demonstrate an inverse correlation between ER alpha and MT1 receptor expression, and confocal microscopic studies demonstrate that the MT1 receptor is localized to the caveoli and that its expression can be repressed by estrogen and melatonin. Melatonin, via activation of its MT1 receptor, suppresses the development and growth of breast cancer by regulation of growth factors, regulation of gene expression, regulation of clock genes, inhibition of tumor cell invasion and metastasis, and even regulation of mammary gland development. The authors have previously reported that the clock gene, Period 2 (Per2), is not expressed in human breast cancer cells but that its reexpression in breast cancer cells results in increased expression of p53 and induction of apoptosis. The authors demonstrate that melatonin, via repression of ROR alpha transcriptional activity, blocks the expression of the clock gene BMAL1. Melatonin's blockade of BMAL1 expression is associated with the decreased expression of SIRT1, a member of the Silencing Information Regulator family and a histone and protein deacetylase that inhibits the expression of DNA repair enzymes (p53, BRCA1 & 2, and Ku70) and the expression of apoptosis-associated genes. Finally, the authors developed an MMTV-MT1-flag mammary knock-in transgenic mouse that displays reduced ductal branching, ductal epithelium proliferation, and reduced terminal end bud formation during puberty and pregnancy. Lactating female MT1 transgenic mice show a dramatic reduction in the expression of beta-casein and whey acidic milk proteins. Further analyses showed significantly reduced ER alpha expression in mammary glands of MT1 transgenic mice. These results demonstrate that the MT1 receptor is a major transducer of melatonin's actions in the breast, suppressing mammary gland development and mediating the anticancer actions of melatonin through multiple pathways.


Assuntos
Neoplasias da Mama/genética , Ritmo Circadiano/fisiologia , Melatonina/fisiologia , Receptor MT1 de Melatonina/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Melatonina/farmacologia , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Receptor MT1 de Melatonina/agonistas , Transdução de Sinais , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA