Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38271094

RESUMO

This experiment was conducted to explore the effects of dietary synbiotics (SYB) supplementation on growth performance, immune function, and intestinal barrier function in piglets challenged with porcine epidemic diarrhea virus (PEDV). Forty crossbred (Duroc × Landrace × Yorkshire) weaned piglets (26 ±â€…1 d old) with a mean body weight (BW) of 6.62 ±â€…0.36 kg were randomly allotted to five groups: control (CON) I and CONII group, both fed basal diet; 0.1% SYB group, 0.2% SYB group, and 0.2% yeast culture (YC) group, fed basal diet supplemented with 0.1%, 0.2% SYB, and 0.2% YC, respectively. On day 22, all piglets were orally administrated with 40 mL PEDV (5.6 × 103 TCID50/mL) except piglets in CONI group, which were administrated with the same volume of sterile saline. The trial lasted for 26 d. Before PEDV challenge, dietary 0.1% SYB supplementation increased final BW, average daily gain (ADG), and decreased the ratio of feed to gain during 0 to 21 d (P < 0.05), as well as improved the apparent nutrient digestibility of dry matter (DM), organic matter (OM), crude protein, ether extract (EE), and gross energy (GE). At the same time, 0.2% YC also improved the apparent nutrient digestibility of DM, OM, EE, and GE (P < 0.05). PEDV challenge increased diarrhea rate and diarrhea indexes while decreased ADG (P < 0.05) from days 22 to 26, and induced systemic and intestinal mucosa innate immune and proinflammatory responses, destroyed intestinal barrier integrity. The decrease in average daily feed intake and ADG induced by PEDV challenge was suppressed by dietary SYB and YC supplementation, and 0.1% SYB had the best-alleviating effect. Dietary 0.1% SYB supplementation also increased serum interleukin (IL)-10, immunoglobulin M, complement component 4, and jejunal mucosal IL-4 levels, while decreased serum diamine oxidase activity compared with CONII group (P < 0.05). Furthermore, 0.1% SYB improved mRNA expressions of claudin-1, zonula occludens protein-1, mucin 2, interferon-γ, interferon regulatory factor-3, signal transducers and activators of transcription (P < 0.05), and protein expression of occludin, and downregulated mRNA expressions of toll-like receptor 3 and tumor necrosis factor-α (P < 0.05) in jejunal mucosa. Supplementing 0.2% SYB or 0.2% YC also had a positive effect on piglets, but the effect was not as good as 0.1% SYB. These results indicated that dietary 0.1% SYB supplementation improved growth performance under normal conditions, and alleviated the inflammatory response and the damage of intestinal barrier via improving innate immune function and decreasing PEDV genomic copies, showed optimal protective effects against PEDV infection.


Porcine epidemic diarrhea virus (PEDV) infection causes watery diarrhea, vomiting, anorexia, and high mortality in piglets, which leads to serious economic losses in many pig-producing countries. Vaccination is commonly used for the prevention of PEDV infection. However, current vaccines are ineffective in preventing infections because of genetic variants of PEDV. Therefore, developing new and efficient strategies to reduce porcine epidemic diarrhea outbreaks for piglets is desirable. Synbiotics (SYB) refer to the biological mixture of probiotics and prebiotics, which combines the advantages of both. At present, the application of probiotics or prebiotics has been widely reported in piglets feeds, which improves growth performance, immune function, microbiota community, intestinal structure, and resistance to bacterial infection. However, there was little report on whether SYB can protect piglets against PEDV infection. Therefore, this study was conducted to investigate the effects of SYB on growth performance, intestinal barrier function, and immune function in PEDV-infected weaned piglets. Results indicated that dietary SYB supplementation improved growth performance, decreased the inflammatory response, and alleviated the damage of intestinal barrier by improving innate antiviral immunity and reducing PEDV genomic copies, ultimately offering optimal protective effects against PEDV infection.


Assuntos
Gastroenteropatias , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Simbióticos , Animais , Suínos , Suplementos Nutricionais , Gastroenteropatias/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Imunidade Inata , Nutrientes , RNA Mensageiro , Doenças dos Suínos/prevenção & controle
2.
Carbohydr Polym ; 326: 121613, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142074

RESUMO

This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 â†’ 3)-ß-ᴅ-Galp-(1→3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-ß-ᴅ-Galp-(1→, →3,4)-ß-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.


Assuntos
Antioxidantes , Yucca , Suínos , Animais , Ratos , Antioxidantes/química , Yucca/química , Fosfatidilinositol 3-Quinases , Polissacarídeos/química
3.
Porcine Health Manag ; 9(1): 32, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420289

RESUMO

BACKGROUND: Small peptide chelated iron (SPCI), a novel iron supplementation in pig diets, owns growth-enhancing characteristics. Although a number of researches have been performed, there is no clear-cut evidence to show the exact relationship between the dose and effects of small peptide chelated minerals. Therefore, we investigated the effect of dietary supplementation of SPCI at different doses in the growth performance, immunity, and intestinal health in weaned pigs. METHODS: Thirty weaned pigs were randomly assigned into five groups and feed with basal diet or the basal diet containing 50, 75, 100, or 125 mg/kg Fe as SPCI diets. The experiment lasted for 21 d and on day 22, blood samples were collected 1 h later. The tissue and intestinal mucosa samples were collected following. RESULTS: Our results showed that the feed to gain ratio (F:G) decreased with different levels of SPCI addition (P < 0.05). The average daily gain (ADG) (P < 0.05) and digestibility of crude protein (P < 0.01) decreased with 125 mg/kg SPCI addition. With dietary different levels of SPCI addition, the serum concentrations of ferritin (quadratic, P < 0.001), transferrin (quadratic, P < 0.001), iron content in liver (quadratic, P < 0.05), gallbladder (quadratic, P < 0.01) and fecal (quadratic, P < 0.01) increased quadraticly. While the iron content in tibia (P < 0.01) increased by 100 mg/kg SPCI supplementation. Dietary 75 mg/kg SPCI addition increased the serum insulin-like growth factor I (IGF-I) (P < 0.01) and SPCI (75 ~ 100 mg/kg) addition also increased the serum content of IgA (P < 0.01). The serum concentrations of IgG (quadratic, P < 0.05) and IgM (quadratic, P < 0.01) increased quadraticly by different levels of SPCI supplementation. Moreover, different levels of SPCI supplementation decreased the serum concentration of D-lactic acid (P < 0.01). The serum glutathione peroxidase (GSH-Px) (P < 0.01) elevated but the malondialdehyde (MDA) (P < 0.05) decreased by 100 mg/kg SPCI addition. Interestingly, SPCI supplementation at 75 ~ 100 mg/kg improved the intestinal morphology and barrier function, as suggested by enhanced villus height (P < 0.01) and villus height/crypt depth (V/C) (P < 0.01) in duodenum, as well as jejunum epithelium tight-junction protein ZO-1 (P < 0.01). Moreover, SPCI supplementation at 75 ~ 100 mg/kg increased the activity of duodenal lactase (P < 0.01), jejunal sucrase (P < 0.01) and ileal maltase (P < 0.01). Importantly, the expression levels of divalent metal transporter-1(DMT1) decreased with different levels of SPCI addition (P < 0.01). In addition, dietary SPCI supplementation at 75 mg/kg elevated the expression levels of critical functional genes such as peptide transporter-1(PePT1) (P = 0.06) and zinc transporter 1 (ZnT1) (P < 0.01) in ileum. The expression levels of sodium/glucose co-transporter-1 (SGLT1) in ileum (quadratic, P < 0.05) increased quadraticly by different levels of SPCI addition and amino acid transporter-1 (CAT1) in jejunum(P < 0.05) also increased by 100 mg/kg SPCI addition. CONCLUSIONS: Dietary SPCI supplementation at 75 ~ 100 mg/kg improved growth performance by elevated immunity and intestinal health.

4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37422911

RESUMO

Phenolic acid like with the 3-caffeoylquini acid (3-CQA) is formed by caffeic acid and qunic acid. This study was conducted to explore the effect of 3-CQA on growth performance and intestinal functions in weaned pigs. A total of 180 weaned pigs were randomly allocated into five treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs in the control group (CON) were fed with basal diet (BD), and the others in the experimental groups were fed with BD and supplemented with 12.5, 25, 50, and 100 mg/kg 3-CQA. On day 43, the blood sample-collected pigs in the CON and optimal-dose group (only based on growth performance) were picked, and housed in metabolism cages (a total of 12 pigs, N = 6). 3-CQA increased the feed efficiency from days 21 to 42 of the trial and throughout the trial (P < 0.05). 3-CQA increased the serum concentrations of total protein, albumin, and total cholesterol (P < 0.05). Moreover, 3-CQA supplementation at 25 mg/kg increased the apparent digestibility of DM, energy, and ash (P < 0.05). Interestingly, 3-CQA decreased the crypt depth but increased the ratio of villus height to crypt depth in the jejunum and ileum (P < 0.05). Moreover, 3-CQA also increased the activities of sucrase, lactase, and catalase in the jejunal mucosa, and increased the activities of alkaline phosphatase and superoxide dismutase in the ileal mucosa (P < 0.05). 3-CQA also increased the abundance of secretory immunoglobulin A in the ileal mucosa (P < 0.05). Importantly, 3-CQA not only elevated the expression levels of critical functional genes such as the zonula occludens-1 , occludin, solute carrier family 7 , and nuclear factor erythroid 2-related factor 2 (Nrf2) in the duodenum but also elevated the expression levels of divalent metal transporter-1 and Nrf2 in the jejunum (P < 0.05). These results suggested a positive effect of 3-CQA supplementation on the growth and intestinal functions of weaned pigs. The mechanisms of action may be associated with elevated anti-oxidant capacity and improved intestinal barrier functions.


In last decades, swine producers used antibiotics as growth promoter added into diet. However, the pharmaceutical use of antibiotics is prohibited by the legislation of several countries due to potential health and environmental concerns. Therefore, the development of substitutes for traditionally used antibiotics has attracted considerable research interest worldwide. Natural phnolic acid like with the 3-CQA is an important component of biologically active phenols isolated from various natural plants. This study was carried out to evaluate the effect of 3-CQA on growth performance, nutrient digestibility, and intestinal functions in pigs. Results indicated that dietary 3-CQA supplementation improved the growth performance, nutrients digestibility in weaned pigs. The beneficial effects of 3-CQA supplementation on growth and intestinal functions suggested that it could serve as a natural potent substitute for antibiotics.


Assuntos
Ácido Clorogênico , Fator 2 Relacionado a NF-E2 , Suínos , Animais , Suplementos Nutricionais , Dieta/veterinária , Nutrientes/metabolismo , Ração Animal/análise
5.
Poult Sci ; 102(8): 102822, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37321033

RESUMO

Yucca schidigera extract (YSE) is a green feed additive that is known to reduce toxic gas emissions and promote intestinal health in animal production. This study investigated the potential of dietary YSE supplementation to mitigate the negative effect of Clostridium perfringens and coccidia infection on productive performance and gut health in laying hens. A total of 48 Lohmann gray laying hens (35 wk of age) were randomly allotted to 1 of 2 groups (n = 24) fed with either a basal diet or a YSE-supplemented diet for 45 d. From d 36 to 45, half of the hens in each group were orally administrated with Clostridium perfringens type A and coccidia. This challenge impaired productive performance and egg quality (P < 0.05), destroyed jejunal morphology and functions (P < 0.05), induced jejunal epithelial cell apoptosis (P < 0.05), and downregulated the antioxidant capacity and Nrf2 pathway expression of jejunal mucosa (P < 0.05) in laying hens. Supplementing YSE in the laying hen diet, to some extents, improved productive performance and egg quality (P < 0.05), and alleviated the effect of challenge on morphology, functions, cell apoptosis, and antioxidant capacity in the jejunum (P < 0.05). Overall, the results suggested that dietary YSE supplementation might mitigate the negative effects of Clostridium perfringens and coccidia infection on gut health, and thereby improve the productive performance and egg quality of laying hens, possibly through enhancing the antioxidant capacity of the jejunum.


Assuntos
Antioxidantes , Yucca , Animais , Feminino , Ração Animal/análise , Antioxidantes/metabolismo , Galinhas/fisiologia , Clostridium perfringens , Dieta/veterinária , Suplementos Nutricionais
6.
Arch Anim Nutr ; 77(2): 141-154, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37133420

RESUMO

The aim of this study was to investigate the protective effects of glutathione (GSH) against oxidative stress and intestinal barrier disruption caused by diquat (an oxidative stress inducer) in weaned piglets. Twenty-four piglets were randomly assigned to four treatments with six pigs per treatment for an 18-d trial. Treatments were basal diet, basal diet + diquat challenge, 50 mg/kg GSH diets + diquat challenge and 100 mg/kg GSH diets + diquat challenge. On day 15, piglets in basal diet group and diquat-challenged groups were intraperitoneally injected with sterile saline and diquat at 10 mg/kg body weight, respectively. The results showed that GSH supplementation improved growth performance of diquat-injected piglets from days 15 to 18 (p < 0.05), especially at a dose of 100 mg/kg GSH. Meanwhile, diquat also caused oxidative stress and intestinal barrier damage in piglets. However, GSH supplementation enhanced the antioxidant capacity of serum and jejunum, as evidenced by the increase in GSH content and total superoxide dismutase activities and the decrease in 8-hydroxy-2'-deoxyguanosine concentrations (p < 0.05). GSH also up-regulated the mRNA expressions of intestinal tight junction protein (zonula occludens 1, ZO1; occludin, OCLN; claudin-1, CLDN1) and mitochondrial biogenesis and function (peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, PGC1α; mitochondrial transcription factor A, TFAM; cytochrome c, CYCS), compared with diquat-challenged piglets in basal diet (p < 0.05). Thus, the study demonstrates that GSH protects piglets from oxidative stress caused by diquat and 100 mg/kg GSH has a better protective role.


Assuntos
Dieta , Diquat , Animais , Suínos , Diquat/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise , Estresse Oxidativo , Glutationa/farmacologia
7.
Anim Biotechnol ; 34(9): 4900-4909, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37149789

RESUMO

Intrauterine growth retardation (IUGR) can result in early liver oxidative damage and abnormal lipid metabolism in neonatal piglets. Ferulic acid (FA), a phenolic compound widely found in plants, has many biological functions, such as anti-inflammation and anti-oxidation. Thus, we explored the effects of dietary FA supplementation on antioxidant capacity and lipid metabolism in newborn piglets with IUGR. In the study, 24 7-day-old piglets were divided into three groups: normal birth weight (NBW), IUGR, and IUGR + FA. The NBW and IUGR groups were fed formula milk as a basal diet, while the IUGR + FA group was fed a basal diet supplemented with 100 mg/kg FA. The trial lasted 21 days. The results showed that IUGR decreased absolute liver weight, increased transaminase activity, reduced antioxidant capacity, and disrupted lipid metabolism in piglets. Dietary FA supplementation enhanced absolute liver weight, reduced serum MDA level and ROS concentrations in serum and liver, markedly increased serum and liver GSH-PX and T-SOD activities, decreased serum HDL-C and LDL-C and liver NEFA, and increased TG content and HL activity in the liver. The mRNA expression related to the Nrf2-Keap1 signaling pathway and lipid metabolism in liver were affected by IUGR. Supplementing FA improved the antioxidant capacity of liver by down-regulating Keap1 and up-regulating the mRNA expression of SOD1 and CAT, and regulated lipid metabolism by increasing the mRNA expression level of Fasn, Pparα, LPL, and CD36. In conclusion, the study suggests that FA supplementation can improve antioxidant capacity and alleviate lipid metabolism disorders in IUGR piglets.


Assuntos
Antioxidantes , Ácidos Cumáricos , Doenças dos Suínos , Feminino , Animais , Suínos , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metabolismo dos Lipídeos , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/veterinária , Retardo do Crescimento Fetal/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fígado , Suplementos Nutricionais , RNA Mensageiro/metabolismo
8.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930062

RESUMO

Two experiments were carried out to evaluate the effects of betaine (BET) supplementation in diets with reduced net energy (NE) levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. In experiment 1, 24 growing pigs (initial body weight, BW, 30.83 ±â€…2.50 kg) were allotted to one of the four treatments (six replications with 1 pig per pen) in a 2 × 2 factorial arrangement, including two dietary NE levels (2475 [N-NE] or 2395 [R80-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). In experiment 2, 72 growing pigs were used in a 2 × 3 factorial arrangement, including three dietary NE levels (2475 [N-NE], 2415 [R60-NE], or 2355 [R120-NE] kcal/kg) and two BET doses (0 or 1500 mg/kg). Pigs with initial BW of 31.44 ±â€…1.65 kg were divided to one of the six treatments (six replications with 2 pigs per pen). In experiment 1, lowing NE concentrations increased average daily feed intake (ADFI) by 10.69% in pigs fed the diet without BET (P > 0.05). BET significantly increased ADFI in N-NE diet (P < 0.05) but had no influence on ADFI in R80-NE diet (P > 0.05). BET enhanced the apparent digestibility of crude protein (CP), dry matter (DM), organic matter (OM), gross energy (GE), and ether extract (EE) in R80-NE diet (P < 0.05). In experiment 2, lowing NE concentrations enhanced ADFI (P > 0.05) and decreased average daily gain (ADG; P < 0.05). The reduction in feed intake by BET was further enhanced as NE concentrations decreased from 2415 to 2355 kcal/kg (P < 0.10). BET reversed the elevation of serum triglyceride, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels caused by R120-NE diet (P < 0.05). The concentrations of cholecystokinin and glucagon-like peptide 1 were increased by BET in pigs fed the R120-NE diet (P < 0.05). Serum metabolomics reveals that lowing dietary NE concentrations affected mainly amino acid biosynthetic pathways (P < 0.05). BET supplementation in R120-NE diet up-regulated serum BET levels and down-regulated homocysteine, DL-carnitine, and four amino acid secondary metabolites (P < 0.05). In conclusion, lowing dietary NE contents reduced the growth performance and caused metabolic abnormalities in growing pigs. However, BET decreased feed intake to a certain extent and improved the metabolic health of pigs fed the low-NE diets, which may be related to the dual regulation of amino acid metabolism and the secretion of appetite related hormones by BET.


Energy is an important factor in affecting the production efficiency and feed cost in animal husbandry. For pigs, the reduction of dietary energy will lead to a decreased growth performance. Therefore, additional researches towards ameliorating the negative effects caused by low energy diets are necessary to conduct, so as to develop appropriate nutritional strategies. Betaine, a trimethyl derivative of glycine, is considered to affect energy partitioning. Betaine may influence the growth performance and healthy status of pigs under low-energy conditions. Herein, two experiments were carried out to evaluate the effects of betaine supplementation in diets with reduced net energy levels on growth performance, nutrient digestibility, and serum metabolomic profiles in growing pigs. Results indicated that lowering dietary energy reduced growth performance and caused metabolic abnormalities in growing pigs, however, betaine supplementation in low-energy diets improved metabolic homeostasis and the utilization of energy despite reduced feed intake to a certain extent.


Assuntos
Betaína , Suplementos Nutricionais , Suínos , Animais , Betaína/farmacologia , Dieta/veterinária , Aminoácidos/metabolismo , Nutrientes , Ração Animal/análise , Digestão , Fenômenos Fisiológicos da Nutrição Animal
9.
Poult Sci ; 102(3): 102371, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739264

RESUMO

The effect of 25-hydroxyvitamin D (25OHD) on the immune response of laying hens is not well elucidated. This study investigated the effects of 25OHD on egg production, egg quality, immune response, and intestinal health of laying hens challenged with Escherichia coli lipopolysaccharide (LPS). One hundred and sixty laying hens at 45 wk of age were randomly divided into 4 dietary treatments with 10 replicates of 4 birds. Hens were fed the corn-soybean based diets contained either 0 or 80 µg/kg 25OHD for 8 wks. At wk of 53 wk, birds of each dietary treatment were injected into the abdomen with 1.5 mg/kg body weight of either LPS or saline a day at 24-h intervals for continuous 7 d. LPS injection significantly decreased (PLPS < 0.05) egg laying rate, feed intake and feed efficiency; while the supplementation of 25OHD increased (PInteraction < 0.05) egg laying rate, feed efficiency and decreased (PInteraction < 0.05) the broken egg rate in layers under LPS injection. LPS challenge decreased (PLPS < 0.05) eggshell strength, eggshell thickness, albumen height and Haugh unit, while dietary 25OHD supplementation increased eggshell strength and eggshell thickness (P25OHD < 0.05). The serum proinflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6)], endotoxin and diamine oxidase (DAO) levels were higher in layers under LPS challenge (PLPS < 0.05); whereas the dietary addition of 25OHD were shown to decrease (P25OHD < 0.05) serum IL-1ß and IL-6 concentration irrespective of LPS challenge and led to a higher serum 25OHD level and a reduction in endotoxin concentration in layers under LPS challenge (PInteraction < 0.05). The layers under LPS challenge had higher crypt depth and lower villus height/crypt depth (V/C) ratio in duodenum and jejunum (PLPS < 0.05), while feeding 25OHD were shown to have decreasing effect on crypt depth and increasing effect V/C ratio in layers under LPS challenge (PInteraction < 0.05). Layers under LPS challenge had lower mRNA expression of intestinal barrier associated proteins (claudin-1 and mucin-1) (PLPS < 0.05), while the addition of 25OHD up-regulated claudin-1 and mucin-1 expression (Pinteraction < 0.05). Lower antioxidant enzymes activities, including superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (T-AOC), glutathione peroxidase (GPx) and higher malondialdehyde (MDA) content in jejunum were found in layers challenged with LPS (P25OHD < 0.05). The effect of 25OHD reversed the effect of LPS on SOD, T-AOC, and MDA content (PInteraction< 0.05). These results suggest that supplementing 80 µg/kg 25OHD in diets may elevate laying performance and egg quality through the improvement of intestinal barrier function, antioxidant capacity, and decreased the proinflammatory cytokines levels in laying hens with Escherichia coli LPS challenge.


Assuntos
Suplementos Nutricionais , Lipopolissacarídeos , Animais , Feminino , Antioxidantes/metabolismo , Mucina-1 , Galinhas/fisiologia , Escherichia coli/metabolismo , Interleucina-6 , Claudina-1 , Dieta/veterinária , Endotoxinas , Calcifediol , Ração Animal/análise
10.
J Agric Food Chem ; 71(3): 1477-1487, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36642968

RESUMO

Transmissible gastroenteritis virus (TGEV), a coronavirus, is one of the main causative agents of diarrhea in piglets and significantly impacts the global swine industry. Pyroptosis is involved in the pathogenesis of coronavirus, but its role in TGEV-induced intestinal injury has yet to be fully elucidated. Eugenol, an essential plant oil, plays a vital role in antiviral innate immune responses. We demonstrate the preventive effect of eugenol on TGEV infection. Eugenol alleviates TGEV-induced intestinal epithelial cell pyroptosis and reduces intestinal injury in TGEV-infected piglets. Mechanistically, eugenol reduces the activation of NLRP3 inflammasome, thereby inhibiting TGEV-induced intestinal epithelial cell pyroptosis. In addition, eugenol scavenges TGEV-induced reactive oxygen species (ROS) increase, which in turn prevents TGEV-induced NLRP3 inflammasome activation and pyroptosis. Overall, eugenol protects the intestine by reducing TGEV-induced pyroptosis through inhibition of NLRP3 inflammasome activation, which may be mediated through intracellular ROS levels. These findings propose that eugenol may be an effective strategy to prevent TGEV infection.


Assuntos
Vírus da Gastroenterite Transmissível , Animais , Eugenol/farmacologia , Inflamassomos/genética , Intestinos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , Espécies Reativas de Oxigênio , Suínos , Vírus da Gastroenterite Transmissível/fisiologia , Proteínas de Ligação a Fosfato/metabolismo , Gasderminas/metabolismo
11.
Poult Sci ; 102(3): 102467, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682132

RESUMO

The underlying mechanism between the gut microbiota and reproductive function is not yet well-known. This study was conducted to investigate the effect of the administration of fecal microbiota transplantation (FMT) from highly laying rate donors on the cecal microbiota, intestinal health and ovarian function in broiler breeders. A total of 60 broiler breeders (53 wk of age) were selected by their laying rate [high (HP, 90.67 ± 0.69%; n = 10) and low (LP, 70.23 ± 0.87%; n = 20)]. The LP breeders were then be transplanted with fecal microbiota from HP hens (FMTHP; n = 10) or the same dosage of PBS (FMTCON; n = 10) for 28 d. The results revealed that FMT from HP donors increased egg-laying rate and serum hormone levels [17ß-estradiol (E2), anti-Müller hormone], also decreased proinflammatory cytokine levels (interleukin-6, interleukin-8, tumor necrosis factor-α) of LP breeders (P < 0.05). The FMTHP group breeders had higher villus height, villus height/crypt depth ratio, and upregulated mRNA expression of jejunum barrier-related gene (ZO-2 and mucin-2) and estrogen, follicle-stimulating hormone (FSH) and anti-Müller hormone (AMH) receptor genes (ESR1, ESR2, FSHR, AMHR) (P < 0.05) than FMTCON group. FMT from HP donors led to higher mRNA expression of Bcl2 and sirtuin1 (SIRT1), while it downregulated the proapoptotic genes (Bax, caspase-3, caspase-8, and caspase-9) mRNA expressions in ovary compared with the FMTCON breeders (P < 0.05), and this pattern was also observed in HP donors. Also, HP breeder had higher observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group, while FMTHP can increase observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group (P < 0.05). The bacteria enrichment of Firmicutes (phylum), Bacteroidetes (phylum), Lactobacillus (genus), Enterococcus (genus), and Bacteroides (genus) were increased by FMTHP treatment. The genera Butyricicoccus, Enterococcus, and Lactobacillus were positively correlated with egg-laying rate. Therefore, cecal microbiomes of breeders with high egg-laying performance have more diverse activities, which may be related to the metabolism and health of the host; and FMT from high-yield donors can increase the hormone secretion, intestinal health, and ovarian function to improve egg-laying performance and the SIRT1-related apoptosis and cytokine signaling pathway were involved in this process.


Assuntos
Transplante de Microbiota Fecal , Animais , Feminino , Galinhas/fisiologia , Citocinas , Suplementos Nutricionais , Transplante de Microbiota Fecal/veterinária , Hormônio Foliculoestimulante , RNA Mensageiro , Sirtuína 1
12.
Biomed Pharmacother ; 158: 114148, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580723

RESUMO

Colitis is a common and complex intestinal inflammatory disease in which lactate, a metabolite of anaerobic glycolysis, plays a crucial role. Our study aimed to investigate the alleviated effect of lactate in colitis, and to provide a nutritional measure to alleviate colitis injury. The variations in colonic lactate in piglets with DSS-induced colitis were investigated in Experiment 1 (Exp.1). Thirty weaned pigs were allotted into three groups and sampled at different stages of DSS-induced colitis (days 0, 5, and 7). The colonic level of lactate and interleukin 10 (IL-10) was significantly decreased on day 5 when compared to day 0. Colonic lactate, IL-10, and G protein receptor 81 (GPR81) levels were significantly increased on day 7 when compared to day 5. Sixty weaned piglets were assigned to control (basal diet), DSS (basal diet with DSS gavage), or lactate (2% lactate supplementation diet with DSS gavage) groups to investigate the effects of lactate on DSS-induced colitis in Experiment 2 (Exp.2). Lactate reduced the disease activity index (DAI), DSS-induced impairment of colonic structure in response to the critical inflammatory cytokines interleukin 1ß (IL-1ß) and interleukin 18 (IL-18) when compared with the DSS group. Furthermore, GPR-81 levels, colonic M2 macrophages, and IL-10 levels, the colonic antioxidant capacity, colonic butyrate levels were increased, and eventually improved growth performance post-colitis. The results of this study show that lactate was decreased at the peak of colitis, accumulated in subsidized colitis. Furthermore, dietary lactate supplementation helped to alleviate DSS-induced colitis injury.


Assuntos
Colite , Suplementos Nutricionais , Ácido Láctico , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Interleucina-10 , Ácido Láctico/uso terapêutico , Suínos
13.
J Nutr Biochem ; 110: 109145, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049671

RESUMO

Adequate ovarian hormones secretion is essential for pregnancy success. Oxidative damage and following inflammation can destroy the ovarian normal function in mammals. Daidzein (DAI) is a classical isoflavonic phytoestrogen with specific oestrogenic activity. This study aimed to explore the effects of daidzein supplementation on fertility and ovarian characteristics of sows through biochemical analysis and RNA-seq technology. Twelve multiparous Yorkshire × Landrace sows were randomly divided into CON and DAI groups. We found that DAI increased total number of embryos as well as P4 and E2 levels of serum. DAI not only elevated the activities of T-AOC and GSH-Px, but also tended to decrease the content of MDA and IL-6 in the serum. In ovary, RNA-Seq identified 237 differentially expressed genes (DEGs), and GO analysis showed that these DEGs were linked to functions associated with immune dysfunction. Moreover, STRING analysis demonstrated that most interacting nodes were TLR-4, LCP2, and CD86. Furthermore, DAI decreased the content of MDA, IL-1ß, IL-6, and TNF-α, and increased the activities of T-AOC and CAT in ovarian tissue. Interestingly, a partial mantel correlation showed that T-AOC was the strongest correlation between the ovarian dataset and selected DEGs. Additionally, DAI supplementation not only increased the protein expressions of Nrf2, HO-1, and NQO1, but also decreased the protein expressions of TLR-4, p-NFκB, p-AKT, and p-IκBα. Altogether, our results indicated that DAI could ameliorate ovarian oxidative stress and inflammation in sows, which might be mediated by suppressing the TLR4/NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Ovário , Animais , Feminino , Gravidez , Suplementos Nutricionais/análise , Fertilidade , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mamíferos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ovário/metabolismo , Estresse Oxidativo , Suínos , Receptor 4 Toll-Like/metabolismo
14.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142202

RESUMO

To explore the protective effect of dietary ß-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.


Assuntos
Amina Oxidase (contendo Cobre) , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , beta-Glucanas , Agrobacterium/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunoglobulina A Secretora/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lactatos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Propionatos/farmacologia , Superóxido Dismutase/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Xilose/metabolismo , beta-Glucanas/metabolismo
15.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142545

RESUMO

Porcine epidemic diarrhea virus (PEDV) infection causes watery diarrhea and vomiting in piglets. The pathogenesis of PEDV infection is related to intestinal inflammation. It is known that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent anti-inflammatory activity, but it is unknown whether 1,25(OH)2D3 can inhibit the PEDV-induced inflammatory response and the underlying mechanism. We used transcriptome analysis, gene and protein expression, RNA interference and overexpression, and other techniques to study the anti-inflammatory effects of 1,25(OH)2D3 on PEDV infection in IPEC-J2 cells. The results showed that interleukin 19 (IL-19) and C-C motif chemokine ligand 20 (CCL20) gene expression were enhanced with the increase in PEDV infection time in IPEC-J2 cells. Interestingly, 1,25(OH)2D3 supplementation obviously inhibited IL-19 and CCL20 expression induced by PEDV. Meanwhile, we also found that 1,25(OH)2D3 reduced p-NF-κB, p-STAT1, and p-STAT3 protein levels induced by PEDV at 24 h post-infection. IκBα and SOCS3, NF-κB, and STAT inhibitor respectively, were increased by 1,25(OH)2D3 supplementation upon PEDV infection. In addition, 1,25(OH)2D3 supplementation inhibited ISG15 and MxA expression induced by PEDV. Although 1,25(OH)2D3 suppressed the JAK/STAT signal pathway and antiviral gene expression, it had no significant effects on PEDV replication and IFN-α-induced antiviral effects. In addition, when the vitamin D receptor (VDR) was silenced by siRNA, the anti-inflammatory effect of 1,25(OH)2D3 was inhibited. Meanwhile, the overexpression of VDR significantly downregulated IL-19 and CCL20 expression induced by PEDV infection. Together, our results provide powerful evidence that 1,25(OH)2D3 could alleviate PEDV-induced inflammation by regulating the NF-κB and JAK/STAT signaling pathways through VDR. These results suggest that vitamin D could contribute to inhibiting intestinal inflammation and alleviating intestinal damage in PEDV-infected piglets, which offers new approaches for the development of nutritional strategies to prevent PEDV infection in piglets.


Assuntos
Vírus da Diarreia Epidêmica Suína , Animais , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Linhagem Celular , Células Epiteliais/metabolismo , Inflamação , Ligantes , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , RNA Interferente Pequeno/farmacologia , Receptores de Calcitriol/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Suínos , Vitamina D/análogos & derivados , Vitamina D/farmacologia
16.
Poult Sci ; 101(6): 101886, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526444

RESUMO

Resveratrol (RV) is associated with protection against oxidative stress to improve health, however the effect of RV in layers under oxidative stress (OS) is limited. The objective of this experiment was to investigate the negative effect of OS and protective effects of RV against OS in laying hens. 40 Lohmann layers (25-wk-old; BW = 1.44±0.10 kg) were allocated to four treatments in a 2 × 2 factorial arrangement with either RV (0 or 600 mg/kg) or intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 µmol/kg BW) for 31 days. The results shown that the hens challenged with tBHP presented lower egg-laying rate, feed intake, feed efficiency and higher defective egg rate (P(tBHP)<0.05). The RV were also observed to attenuated egg laying rate and feed intake reduction together with decreased broken egg rate under t-BHP challenge (P(Interaction)≤0.01). The tBHP challenged layer demonstrated lower intestinal morphology (villus height in duodenum and jejunum), lower antioxidant enzymes activities [total superoxidase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC)], and glutathione (GSH) levels and higher malondialdehyde (MDA) level] (P(tBHP)<0.05). Dietary RV increased jejunal SOD, GSH-Px and T-AOC activities, and reduced MDA concentration (P(RV) ≤0.05). Layers under tBHP challenge up-regulated mRNA expression of pro-inflammatory cytokine [interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)] and nuclear factor NF-κB (P(tBHP)<0.05) in jejunum. Dietary RV supplementation down-regulated mRNA gene expression of IL-1ß, IL-6, TNF-α and NF-κB (P(RV) ≤0.05). Dietary RV up-regulated mRNA expression of jejunal barrier-related proteins (claudin-1, claudin-2, mucin-1, and occludin) and ovarian reproductive hormone receptor [steroidogenic acute regulatory protein (StAR), androgen receptor (AR), estrogen receptor 1 (ESR1), and activin a receptor type 1 (ACVR1)] (P(RV) ≤0.05). Overall, the results indicate that tBHP induced oxidative stress to result in reducing production performance, intestinal health and induced ovarian inflammation; whereas dietary RV was able to maintain intestinal health and mitigate the negative impact of tBHP challenge on production performance and ovarian function.


Assuntos
Ração Animal , Antioxidantes , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Resveratrol , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa
17.
Poult Sci ; 101(4): 101720, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35231770

RESUMO

The purpose of this experiment is to explore the effects of dietary supplementation of benzoic acid, Enterococcus faecium, and essential oil complex (BEC) on coccidia and Clostridium perfringens challenge in laying hens. A total of 80 Lohmann gray laying hens (35 wk old) were allocated to 4 treatments in a 2 × 2 factorial arrangement with the main effects of Clostridium perfringens type A (CP) and coccidia challenge (with or without challenge) and 2 BEC levels (0 and 1,000 mg/kg). The total experimental period was 6 wk. The results showed that: the challenge group significantly decreased the laying rate and average daily feed intake (ADFI) of laying hens (PChallenge < 0.01). The BEC + challenge group significantly increased the laying rate and decreased the feed conversion ratio (FCR) of laying hens (PBEC < 0.05). The challenge significantly decreased the thickness, strength, and relative weight of eggshell (PChallenge < 0.05). The BCE + challenge group significantly increased the relative weight and strength of the eggshell (PBEC < 0.05). The challenge significantly increased the crypt depth of the duodenum, jejunum and ileum, and decreased the villus-to-crypt ratio (V/C) (PChallenge < 0.01). The BEC + challenge group decreased the crypt depth of the duodenum and jejunum, and increased the V/C of the duodenum (PBEC < 0.01). The pathological scores of duodenum and jejunum of the challenge group were significantly higher than other groups (PChallenge < 0.01), while the BEC + challenge group had lower pathological scores of jejunum (PBEC < 0.01). The challenge significantly decreased the mRNA expression of Occludin, Mucin-2, Zonula occluden-1 (ZO-1) (Pchallenge < 0.05); whereas the BEC group significantly increased the expression of Occludin, Mucin-2, and Claudin-1 mRNA (PBEC < 0.05). The challenge significantly increased the level of interleukin 1ß (IL-1ß) in the jejunum (PChallenge < 0.05). Taken together, adding BEC to the diet can improved production performance and egg quality of layers, by protecting intestinal health against Clostridium perfringens type A (CP) and coccidia challenge.


Assuntos
Coccídios , Enterococcus faecium , Óleos Voláteis , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ácido Benzoico , Galinhas , Clostridium perfringens , Dieta/veterinária , Suplementos Nutricionais/análise , Feminino , Mucina-2 , Ocludina , Óleos Voláteis/farmacologia , Óvulo , RNA Mensageiro
18.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1246-1257, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34967039

RESUMO

This study was aimed to explore the effects of dietary plant essential oil (PEO) supplementation on growth performance and meat quality in finishing pigs. A total of eighteen Duroc × Landrace × Yorkshire finishing barrows with an average initial body weight of 79.86 ± 1.94 kg were randomly assigned to CON group (fed with a basal diet) and PEO group (fed with the basal diet containing 200 mg/kg PEO) with 9 replicates per treatment. The trial lasted for 42 days. The results showed that dietary PEO supplementation significantly increased ADG during phase I (1-21 days) and the overall experimental period (p < 0.05), tended to increase ADFI in phase II (22-42 days) and the overall experimental period (p = 0.09), decreased F/G in phase I (p < 0.05) and tended to decrease F/G during the overall experimental period (p = 0.08). Meanwhile, compared to the CON group, the digestibility of DM, GE and EE in the PEO group was improved remarkably (p < 0.05). PEO supplementation also significantly improved T-AOC and lowered MDA content in longissimus dorsi (p < 0.05), tended to increase the activity of T-SOD (p = 0.06). A higher IMF content (p = 0.09) and a lower shear force (p = 0.08) of longissimus dorsi were found in the PEO group than that in CON group (p = 0.09). Furthermore, pigs fed the PEO diet showed higher mRNA abundances of GLUT4, LPL, CPT-1, CD36, FABP and LDL-R in the liver, and GLUT4 and FAS in the longissimus dorsi (p < 0.05). In conclusion, PEO fed to finishing pigs improved the growth performance and nutrient digestibility. Furthermore, PEO supplementation had the potential role to improve pork quality by increasing the antioxidant capacity and IMF content, and decreasing the shear force of longissimus dorsi to a certain extent.


Assuntos
Suplementos Nutricionais , Óleos Voláteis , Suínos , Animais , Óleos de Plantas , Carne/análise , Dieta , Nutrientes , Ração Animal/análise
19.
J Anim Physiol Anim Nutr (Berl) ; 106(5): 1036-1045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34668247

RESUMO

Yucca schidigera extract (YE) can decrease ammonia concentration in livestock housing, which could be associated with the inhibition of urease. The aim of this study was to investigate the other possible reasons of dietary YE supplementation reducing nitrogen emission in weaned piglets. A total of 14 crossbred weaned barrows were allotted into two groups fed the diets supplementing 0 and 120 mg/kg YE for 14 days. The YE administration decreased F/G ratio and hindgut NH3 -N production in weaned piglets (p < 0.05). Dietary YE supplementation decreased serum urea nitrogen levels, and increased nutrient digestibility, which could be related to the improvement of morphology, digestive and absorptive enzyme activities, and nutrient transporter mRNA expression in jejunal mucosa of weaned piglets (p < 0.05). The mRNA expression of tight junction proteins, mucins and apoptosis-related genes was also improved by YE treatment in jejunal mucosa of weaned piglets (p < 0.05). In addition, dietary YE supplementation regulated the microbiota structure and volatile fatty acid content in distal intestine of weaned piglets (p < 0.05). These results suggest that YE administration can decrease hindgut NH3 -N production in weaned piglets, which is associated with the increased nutrient utilization and gut-barrier function.


Assuntos
Yucca , Animais , Suplementos Nutricionais , Nitrogênio , Nutrientes , Extratos Vegetais/farmacologia , RNA Mensageiro , Suínos
20.
Br J Nutr ; 128(8): 1526-1534, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34763738

RESUMO

Diarrhoea caused by pathogens such as enterotoxigenic E. coli (ETEC) is a serious threat to the health of young animals and human infants. Here, we investigated the protective effect of fructo-oligosaccharides (FOS) on the intestinal epithelium with ETEC challenge in a weaned piglet model. Twenty-four weaned piglets were randomly divided into three groups: (1) non-ETEC-challenged control (CON); (2) ETEC-challenged control (ECON); and (3) ETEC challenge + 2·5 g/kg FOS (EFOS). On day 19, the CON pigs were orally infused with sterile culture, while the ECON and EFOS pigs were orally infused with active ETEC (2·5 × 109 colony-forming units). On day 21, pigs were slaughtered to collect venous blood and small intestine. Result showed that the pre-treatment of FOS improved the antioxidant capacity and the integrity of intestinal barrier in the ETEC-challenged pigs without affecting their growth performance. Specifically, compared with ECON pigs, the level of GSH peroxidase and catalase in the plasma and intestinal mucosa of EFOS pigs was increased (P < 0·05), and the intestinal barrier marked by zonula occluden-1 and plasmatic diamine oxidase was also improved in EFOS pigs. A lower level (P < 0·05) of inflammatory cytokines in the intestinal mucosa of EFOS pigs might be involved in the inhibition of TLR4/MYD88/NF-κB pathway. The apoptosis of jejunal cells in EFOS pigs was also lower than that in ECON pigs (P < 0·05). Our findings provide convincing evidence of possible prebiotic and protective effect of FOS on the maintenance of intestinal epithelial function under the attack of pathogens.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Animais , Humanos , Suínos , Escherichia coli Enterotoxigênica/fisiologia , Mucosa Intestinal/metabolismo , Suplementos Nutricionais , Oligossacarídeos/farmacologia , Doenças dos Suínos/metabolismo , Desmame
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA