Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Diabetes Rev ; 18(3): e120721194709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34931982

RESUMO

Type 2 Diabetes Mellitus (DM) is the most common form of diabetes. The initial treatment of type 2 DM consists of the adoption of healthy lifestyle habits together with several classes of hypoglycemic agents. However, these medications are not always able to reduce the blood glucose levels in all patients. Therefore, creatine supplementation has emerged as a new putative candidate for type 2 DM treatment. This systematic review aimed to investigate the effects (benefits and harms) of creatine supplementation in patients with type 2 diabetes through a systematic review. The studies were searched in MEDLINE, EMBASE, LILACS, CENTRAL, SPORTDiscus, and CINAHL databases, without date or language restrictions. Methodological quality was assessed using the Cochrane risk-of-bias table. The certainty of the evidence was classified using the Grading of Recommendations Assessment, Development and Evaluation approach. Three randomized controlled trials (RCTs) were included (87 participants). Overall, the methodological quality was classified as unclear to a high risk of bias. Each trial compared creatine supplementation with a different control group (placebo, metformin, and glibenclamide). Creatine supplementation seems to be effective in decreasing glycemic levels and glycosylated hemoglobin concentrations compared to placebo. No difference was observed compared to metformin or glibenclamide with creatine, and all treatments were able to reduce blood glucose levels. No major adverse effects were observed. Based on the low certainty of evidence, creatine supplementation was shown to be a hypoglycemic intervention for patients with type 2 diabetes, without major adverse events reported. However, well- designed RCTs with larger sample sizes and long-term outcomes are needed to support this evidence.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Glicemia , Creatina/uso terapêutico , Suplementos Nutricionais , Glibureto/uso terapêutico , Humanos , Hipoglicemiantes/efeitos adversos , Metformina/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
PLoS One ; 8(11): e78464, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223811

RESUMO

Renovascular hypertension induced by 2 Kidney-1 Clip (2K-1C) is a renin-angiotensin-system (RAS)-dependent model, leading to renal vascular rarefaction and renal failure. RAS inhibitors are not able to reduce arterial pressure (AP) and/or preserve the renal function, and thus, alternative therapies are needed. Three weeks after left renal artery occlusion, fluorescently tagged mesenchymal stem cells (MSC) (2×10(5) cells/animal) were injected weekly into the tail vein in 2K-1C hypertensive rats. Flow cytometry showed labeled MSC in the cortex and medulla of the clipped kidney. MSC prevented a further increase in the AP, significantly reduced proteinuria and decreased sympathetic hyperactivity in 2K-1C rats. Renal function parameters were unchanged, except for an increase in urinary volume observed in 2K-1C rats, which was not corrected by MSC. The treatment improved the morphology and decreased the fibrotic areas in the clipped kidney and also significantly reduced renal vascular rarefaction typical of 2K-1C model. Expression levels of IL-1ß, TNF-α angiotensinogen, ACE, and Ang II receptor AT1 were elevated, whereas AT2 levels were decreased in the medulla of the clipped kidney. MSC normalized these expression levels. In conclusion, MSC therapy in the 2K-1C model (i) prevented the progressive increase of AP, (ii) improved renal morphology and microvascular rarefaction, (iii) reduced fibrosis, proteinuria and inflammatory cytokines, (iv) suppressed the intrarenal RAS, iv) decreased sympathetic hyperactivity in anesthetized animals and v) MSC were detected at the CNS suggesting that the cells crossed the blood-brain barrier. This therapy may be a promising strategy to treat renovascular hypertension and its renal consequences in the near future.


Assuntos
Hipertensão Renovascular/terapia , Transplante de Células-Tronco Mesenquimais , Proteinúria/terapia , Animais , Pressão Sanguínea , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Corantes Fluorescentes , Expressão Gênica , Hipertensão Renovascular/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/patologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/patologia , Ratos , Ratos Wistar , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Artéria Renal/cirurgia , Sistema Renina-Angiotensina/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA