Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558090

RESUMO

Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia-a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal-using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.


Assuntos
COVID-19 , Plantas Medicinais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Simulação de Acoplamento Molecular , Plantas Medicinais/metabolismo , Altitude , Nepal , Antivirais/química , Ligação Proteica , Simulação de Dinâmica Molecular
2.
BMC Complement Med Ther ; 21(1): 116, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836728

RESUMO

BACKGROUND: A biofilm is an extracellular polymeric substance (EPS) composed of polysaccharides, proteins, nucleic acids, and lipids that impede antibiotics and immune cells, thus providing a shielded environment for bacterial growth. Due to biofilm formation, some microbes can show up to 1000 fold increased resistance towards the antibiotics than the normal planktonic forms. The study was conducted to screen the crude extracts of medicinal plants used in Nepal for their in vitro antibiofilm activities. METHODS: Total phenolic and total flavonoid contents were determined by using a Folin-Ciocalteau reagent and aluminium trichloride method, respectively. Resazurin assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The initial antibiofilm activities and their inhibitory concentration (IC50) values were determined by the microtiter based modified crystal violet staining method. RESULTS: Out of 25 different plant extracts were used for the study, methanolic extracts of 20 plants showed a biofilm inhibition activity against five different strong biofilm producing Escherichia coli strains. Calotropis gigantea exhibited inhibition against all five different E. coli strains with IC50 values ranging from 299.7 ± 20.5 to 427.4 ± 2.7 µg/mL. Apart from that, Eclipta prostrata also showed biofilm formation inhibition, followed by Eupatorium adenophorum, Moringa oleifera, Ocimum tenuifolium, Oxalis lantifolia, Prunus persica, and Urtica parviflora. The extracts of C. gigantea, E. prostrata, Mangifera indica, O. tenuifolium, P. persica, and U. parviflora exhibited a moderate to poor MIC value ranging from 625 to 2500 µg/mL. The highest amount of phenolic content (TPC) was found in Acacia catechu followed by Morus alba, which was 38.9 and 25.1 mg gallic acid equivalents, respectively. The highest amount of flavonoid content was found in A. catechu followed by M. indica, which was 27.1 and 20.8 mg quercetin equivalents, respectively. CONCLUSION: Extracts of C. gigantea, E. prostrata, P. persica, U. parviflora, and O. tenuifolium showed antibacterial as well as antibiofilm activity against pathogenic and strong biofilm producing E. coli. Thus, extracts or the pure compound from these medicinal plants could be used as antibiotics in the future.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Plantas Medicinais/química , Escherichia coli Uropatogênica/efeitos dos fármacos , Nepal
3.
Phytother Res ; 35(3): 1298-1312, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33037698

RESUMO

The whole world is entangled by the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), people are dying in thousands each day, and without an actual medication, it seems not possible for the bringing this global health crisis to a stop. Natural products have been in constant use since ancient times and are proven by time to be effective. Crude extract or pure compounds isolated from medicinal plants and/or herbs such as Artemisia annua, Agastache rugosa, Astragalus membranaceus, Cassia alata, Ecklonia cava, Gymnema sylvestre, Glycyrrhizae uralensis, Houttuynia cordata, Lindera aggregata, Lycoris radiata, Mollugo cerviana, Polygonum multiflorum, Pyrrosia lingua, Saposhnikoviae divaricate, Tinospora cordifolia etc. have shown promising inhibitory effect against coronavirus. Several molecules, including acacetin, amentoflavone, allicin, blancoxanthone, curcumin, daidzein, diosmin, epigallocatechin-gallate, emodin, hesperidin, herbacetin, hirsutenone, iguesterin, jubanine G, kaempferol, lycorine, pectolinarin, phloroeckol, silvestrol, tanshinone I, taxifolin, rhoifolin, xanthoangelol E, zingerol etc. isolated from plants could also be potential drug candidates against COVID-19. Moreover, these could also show promising inhibitory effects against influenza-parainfluenza viruses, respiratory syncytial virus, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have reported 93 antiviral drug candidates which could be a potential area of research in drug discovery.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Pandemias , SARS-CoV-2/efeitos dos fármacos
4.
Biomed Res Int ; 2015: 265425, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738151

RESUMO

The worldwide increase of multidrug resistance in both community- and health-care associated bacterial infections has impaired the current antimicrobial therapy, warranting the search for other alternatives. We aimed to find the in vitro antibacterial activity of ethanolic extracts of 16 different traditionally used medicinal plants of Nepal against 13 clinical and 2 reference bacterial species using microbroth dilution method. The evaluated plants species were found to exert a range of in vitro growth inhibitory action against the tested bacterial species, and Cynodon dactylon was found to exhibit moderate inhibitory action against 13 bacterial species including methicillin-resistant Staphylococcus aureus, imipenem-resistant Pseudomonas aeruginosa, multidrug-resistant Salmonella typhi, and S. typhimurium. The minimum inhibitory concentration (MIC) values of tested ethanolic extracts were found from 31 to >25,000 µg/mL. Notably, ethanolic extracts of Cinnamomum camphora, Curculigo orchioides, and Curcuma longa exhibited the highest antibacterial activity against S. pyogenes with a MIC of 49, 49, and 195 µg/mL, respectively; whereas chloroform fraction of Cynodon dactylon exhibited best antibacterial activity against S. aureus with a MIC of 31 µg/mL. Among all, C. dactylon, C. camphora, C. orchioides, and C. longa plant extracts displayed a potential antibacterial activity of MIC < 100 µg/mL.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Antibacterianos/química , Humanos , Extratos Vegetais/química
5.
Fitoterapia ; 84: 202-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23103954

RESUMO

Seven constituents were isolated from the stems of Lawsonia alba Lam., following an activity-guided isolation, which include two new constituents, namely lawsorosemarinol (1) and lawsofructose (2), one known compound 2-(ß-d-glucopyranosyloxy)-1, 4-naphthoquinone (3) and four compounds, 4-hydroxy coumarine (4), 3-(4-hyroxyphenyl)-triacontyl-(Z)-propenoate (5), 3-(4-hydroxy-3-methoxyphenyl)-triacontyl-(Z)-propenoate (6) and 7-hydroxy-4-methyl coumarin (7) first time isolated from Lawsonia alba. Their structure elucidation was based on spectroscopic data analyses. Compounds 3 and 7 showed a moderate inhibition of urease activity, while rest of them showed less than 50% inhibition. These compounds did not show any significant inhibition against α-chymotrypsin.


Assuntos
Quimotripsina/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lawsonia (Planta)/química , Caules de Planta/química , Urease/antagonistas & inibidores , Quimotripsina/metabolismo , Estrutura Molecular , Estereoisomerismo , Urease/metabolismo
6.
Fitoterapia ; 83(1): 204-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22062354

RESUMO

Phytochemical investigation of the stem bark of Stereospermum acuminatissimum K. Schum. resulted in the isolation of 21 compounds, including two new guanine derivatives, 1,3,7-trimethylguanin-1/3-ium (1) and 3,7-dimethylguanin-1/3-ium (2), and one new phenolic long chain ester, 2-(4-hydroxyphenyl)ethyl hentriacontanoate (3). The known compounds were identified as sterequinones A, F, and H (4, 5, and 6), zenkequinones A-B (7-8), p-coumaric acid (9), methyl caffeate (10), caffeic acid (11), psilalic acid (12), syringaldehyde (13), norviburtinal (14), specioside (15), verminoside (16), tyrosol (17), eutigoside A (18), ellagic acid (19), atranorin (20), and ursolic acid (21). The metabolites were screened for their potential against urease and α-chymotrypsin enzymes, as urease is targeted in peptic ulcer while α-chymotrypsin is used to remove protein debris in ulcer. Compound 20 was found to be excellent urease inhibitor with IC(50) value of 18.2 ± 0.03 µM. Compounds 13 and 18-20 are reported for the first time from the genus Stereospermum. The chemotaxonomic significance of the isolated compounds was also described.


Assuntos
Antraquinonas/química , Antraquinonas/farmacologia , Bignoniaceae/química , Iridoides/química , Iridoides/farmacologia , Urease/antagonistas & inibidores , Antraquinonas/metabolismo , Bignoniaceae/metabolismo , Biomarcadores , Iridoides/metabolismo , Estrutura Molecular
7.
Nat Prod Commun ; 6(8): 1117-20, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21922913

RESUMO

Phytochemical investigation of the aerial parts of Cichorium intybus L. resulted in the isolation and identification of two new natural metabolites, 2,6-di[but-3(E)-en-2-onyl]naphthalene (1), and 3,3',4,4'-tetrahydroxychalcone (2), along with nine known compounds. Their structures were determined by spectroscopic techniques including 1D and 2D NMR. The known compounds were identified as scopoletin (3), 4-hydroxyphenylacetic acid (4), 3-hydroxy-4-methoxybenzoic acid (5), 4,4'-dihydroxychalcone (6), 6,7-dihydroxycoumarine (7), 1-triacontanol (8), lupeol (9), beta-sitosterol (10), and beta-sitosterol-3-O-beta-glucopyranoside (11). Compounds 4-6 and 8 are reported for the first time from C. intybus. Compounds 2 and 3 showed weak inhibitory activities against urease and alpha-chymotrypsin enzymes, respectively.


Assuntos
Quimotripsina/antagonistas & inibidores , Cichorium intybus/química , Inibidores Enzimáticos/farmacologia , Urease/antagonistas & inibidores , Inibidores Enzimáticos/química , Estrutura Molecular , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA