Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Res Int ; 172: 113158, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689911

RESUMO

Conjugated linoleic acid (CLA) has attracted great attention in recent years as a popular class of functional food that is broadly used. It refers to a group of geometric and positional isomers of linoleic acid (LA) with a conjugated double bond. The main natural sources of CLA are dairy products, beef and lamb, whereas only trace amounts occur naturally in plant lipids. CLA has been shown to improve various health issues, having effects on obesity, inflammatory, anti-carcinogenicity, atherogenicity, immunomodulation, and osteosynthesis. Also, compared to studies on humans, many animal researches reveal more positive benefits on health. CLA represents a nutritional avenue to improve lifestyle diseases and metabolic syndrome. Most of these effects are attributed to the two major CLA isomers [conjugated linoleic acid cis-9,trans-11 isomer (c9,t11), and conjugated linoleic acid trans-10,cis-12 isomer (t10,c12)], and their mixture (CLA mix). In contrast, adverse effects of CLA have been also reported, such as glucose homeostasis, insulin resistance, hepatic steatosis and induction of colon carcinogenesis in humans, as well as milk fat inhibition in ruminants, lowering chicken productivity, influencing egg quality and altering growth performance in fish. This review article aims to discuss the health benefits of CLA as a nutraceutical supplement and highlight the possible mechanisms of action that may contribute to its outcome. It also outlines the feasible adverse effects of CLA besides summarizing the recent peer-reviewed publications on CLA to ensure its efficacy and safety for proper application in humans.


Assuntos
Alimento Funcional , Ácidos Linoleicos Conjugados , Bovinos , Humanos , Animais , Ovinos , Suplementos Nutricionais , Carcinogênese , Galinhas
2.
Int J Dermatol ; 57(4): 449-457, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417554

RESUMO

BACKGROUND: Myiasis induced by the sheep blowfly, Lucilia sericata, represents a public health problem widely distributed throughout the world. L. sericata larval stages feed on both humans and animals. L. sericata adults and larvae can play a role in spreading agents of mycobacterial infections. OBJECTIVES: It is critical to establish new and safe alternative methods of controlling L. sericata. METHODS: The insecticidal effectiveness and growth inhibition potential of three commercially available essential oils (EOs), vetiver (Chrysopogon zizanioides), cinnamon (Cinnamomum zeylanicum), and lavender (Lavandula angustifolia), as well as their blends, were tested against the second (L2) and third (L3) larval stages of L. sericata. Sunflower (Helianthus annuus) oil was used as a carrier and tested on L2 and L3 larvae. To the best of our knowledge, all applied essential oils, except lavender, and oil blends were tested against L. sericata for the first time. RESULTS: All applied oils did not repel L2 from the treated liver but adversely affected their development. Contact treatments on L. sericata L3 indicated that vetiver and cinnamon oils significantly affected treated larvae. Total mortality rates were 93.33 and 95.56%, respectively. Furthermore, oil blends tested through contact assays killed larvae when used at higher concentrations; adult emergence was eliminated post-treatment with doses >30% for oil blend 1 and >10% for oil blend 2. CONCLUSION: Overall, cinnamon and vetiver oils (5%) were selected as reliable and cheap biopesticides for controlling larvae of L. sericata. The tested oils are inexpensive and represent new promising botanical insecticides in the fight against blowflies causing myiasis.


Assuntos
Vetiveria , Cinnamomum zeylanicum , Dípteros/efeitos dos fármacos , Larva/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Agentes de Controle Biológico/farmacologia , Dípteros/crescimento & desenvolvimento , Controle de Insetos/métodos , Repelentes de Insetos/farmacologia , Larva/crescimento & desenvolvimento , Lavandula , Pupa/efeitos dos fármacos , Óleo de Girassol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA