Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
JMIR Form Res ; 8: e51021, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306176

RESUMO

BACKGROUND: Chronic pain is one of the most common and critical long-term effects of breast cancer. Digital health technologies enhance the management of chronic pain by monitoring physical and psychological health status and supporting pain self-management and patient treatment decisions throughout the clinical pathway. OBJECTIVE: This pilot study aims to evaluate patients' experiences, including usability, with a novel digital integrated health ecosystem for chronic pain named PainRELife. The sample included patients with breast cancer during survivorship. The PainRELife ecosystem comprises a cloud technology platform interconnected with electronic health records and patients' devices to gather integrated health care data. METHODS: We enrolled 25 patients with breast cancer (mean age 47.12 years) experiencing pain. They were instructed to use the PainRELife mobile app for 3 months consecutively. The Mobile Application Rating Scale (MARS) was used to evaluate usability. Furthermore, pain self-efficacy and participation in treatment decisions were evaluated. The study received ethical approval (R1597/21-IEO 1701) from the Ethical Committee of the European Institute of Oncology. RESULTS: The MARS subscale scores were medium to high (range: 3.31-4.18), and the total app quality score was 3.90. Patients with breast cancer reported reduced pain intensity at 3 months, from a mean of 5 at T0 to a mean of 3.72 at T2 (P=.04). The total number of times the app was accessed was positively correlated with pain intensity at 3 months (P=.03). The engagement (P=.03), information (P=.04), and subjective quality (P=.007) subscales were positively correlated with shared decision-making. Furthermore, participants with a lower pain self-efficacy at T2 (mean 40.83) used the mobile app more than participants with a higher pain self-efficacy (mean 48.46; P=.057). CONCLUSIONS: The data collected in this study highlight that digital health technologies, when developed using a patient-driven approach, might be valuable tools for increasing participation in clinical care by patients with breast cancer, permitting them to achieve a series of key clinical outcomes and improving quality of life. Digital integrated health ecosystems might be important tools for improving ongoing monitoring of physical status, psychological burden, and socioeconomic issues during the cancer survivorship trajectory. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/41216.

2.
JMIR Res Protoc ; 12: e41216, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171843

RESUMO

BACKGROUND: Chronic pain (CP) and its management are critical issues in the care pathway of patients with breast cancer. Considering the complexity of CP experience in cancer, the international scientific community has advocated identifying cutting-edge approaches for CP management. Recent advances in the field of health technology enable the adoption of a novel approach to care management by developing integrated ecosystems and mobile health apps. OBJECTIVE: The primary end point of this pilot study is to evaluate patients' usability experience at 3 months of a new digital and integrated technological ecosystem, PainRELife, for CP in a sample of patients with breast cancer. The PainRELife ecosystem is composed of 3 main technological assets integrated into a single digital ecosystem: Fast Healthcare Interoperability Resources-based cloud platform (Nu platform) that enables care pathway definition and data collection; a big data infrastructure connected to the Fast Healthcare Interoperability Resources server that analyzes data and implements dynamic dashboards for aggregate data visualization; and an ecosystem of personalized applications for patient-reported outcomes collection, digital delivery of interventions and tailored information, and decision support of patients and caregivers (PainRELife app). METHODS: This is an observational, prospective pilot study. Twenty patients with early breast cancer and chronic pain will be enrolled at the European Institute of Oncology at the Division of Medical Senology and the Division of Pain Therapy and Palliative Care. Each patient will use the PainRELife mobile app for 3 months, during which data extracted from the questionnaires will be sent to the Nu Platform that health care professionals will manage. This pilot study is nested in a large-scale project named "PainRELife," which aims to develop a cloud technology platform to interoperate with institutional systems and patients' devices to collect integrated health care data. The study received approval from the Ethical Committee of the European Cancer Institute in December 2021 (number R1597/21-IEO 1701). RESULTS: The recruitment process started in May 2022 and ended in October 2022. CONCLUSIONS: The new integrated technological ecosystems might be considered an encouraging affordance to enhance a patient-centered approach to managing patients with cancer. This pilot study will inform about which features the health technological ecosystems should have to be used by cancer patients to manage CP. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/41216.

3.
J Neural Eng ; 18(6)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34678794

RESUMO

Objective.Adaptive deep brain stimulation (aDBS) is a form of invasive stimulation that was conceived to overcome the technical limitations of traditional DBS, which delivers continuous stimulation of the target structure without considering patients' symptoms or status in real-time. Instead, aDBS delivers on-demand, contingency-based stimulation. So far, aDBS has been tested in several neurological conditions, and will be soon extensively studied to translate it into clinical practice. However, an exhaustive description of technical aspects is still missing.Approach.in this topical review, we summarize the knowledge about the current (and future) aDBS approach and control algorithms to deliver the stimulation, as reference for a deeper undestending of aDBS model.Main results.We discuss the conceptual and functional model of aDBS, which is based on the sensing module (that assesses the feedback variable), the control module (which interpretes the variable and elaborates the new stimulation parameters), and the stimulation module (that controls the delivery of stimulation), considering both the historical perspective and the state-of-the-art of available biomarkers.Significance.aDBS modulates neuronal circuits based on clinically relevant biofeedback signals in real-time. First developed in the mid-2000s, many groups have worked on improving closed-loop DBS technology. The field is now at a point in conducting large-scale randomized clinical trials to translate aDBS into clinical practice. As we move towards implanting brain-computer interfaces in patients, it will be important to understand the technical aspects of aDBS.


Assuntos
Estimulação Encefálica Profunda , Doenças do Sistema Nervoso , Biorretroalimentação Psicológica , Estimulação Encefálica Profunda/métodos , Humanos
4.
Front Med (Lausanne) ; 6: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231653

RESUMO

Health data autonomously collected by users are presently considered as largely beneficial for wellness, prevention, disease management, as well as clinical research, especially when longitudinal, chronic, home-based monitoring is needed. However, data quality and reliability are the main barriers to overcome, in order to exploit such potential. To this end, we designed, implemented, and tested a system to integrate patient-generated personally collected health data into the clinical research data workflow, using a standards-based architecture that ensures the fulfillment of the major requirements for digital data in clinical studies. The system was tested in a clinical investigation for the optimization of deep brain stimulation (DBS) therapy in patients with Parkinson's disease that required both the collection of patient-generated data and of clinical and neurophysiological data. The validation showed that the implemented system was able to provide a reliable solution for including the patient as direct digital data source, ensuring reliability, integrity, security, attributability, and auditability of data. These results suggest that personally collected health data can be used as a reliable data source in longitudinal clinical research, thus improving holistic patient's personal assessment and monitoring.

5.
Appl Clin Inform ; 7(3): 633-45, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27452661

RESUMO

OBJECTIVE: Solutions for improving management of chronic conditions are under the attention of healthcare systems, due to the increasing prevalence caused by demographic change and better survival, and the relevant impact on healthcare expenditures. The objective of this study was to propose a comprehensive architecture of a mHealth system aimed at boosting the active and informed participation of patients in their care process, while at the same time overcoming the current technical and psychological/clinical issues highlighted by the existing literature. METHODS: After having studied the current challenges outlined in the literature, both in terms of technological and human requirements, we focused our attention on some specific psychological aspects with a view to providing patients with a comprehensive and personalized solution. Our approach has been reinforced through the results of a preliminary assessment we conducted on 22 patients with chronic conditions. The main goal of such an assessment was to provide a preliminary understanding of their needs in a real context, both in terms of self-awareness and of their predisposition toward the use of IT solutions. RESULTS: According to the specific needs and features, such as mindfulness and gamification, which were identified through the literature and the preliminary assessment, we designed a comprehensive open architecture able to provide a tailor-made solution linked to specific individuals' needs. CONCLUSION: The present study represents the preliminary step towards the development of a solution aimed at enhancing patients' actual perception and encouraging self-management and self-awareness for a better lifestyle. Future work regards further identification of pathology-related needs and requirements through focus groups including all stakeholders in order to describe the architecture and functionality in greater detail.


Assuntos
Doença Crônica , Estilo de Vida , Medicina de Precisão/métodos , Autocuidado , Sistemas de Apoio a Decisões Clínicas , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Atenção Plena , Telemedicina
7.
J Neurophysiol ; 114(1): 440-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25925328

RESUMO

This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.


Assuntos
Encéfalo/fisiologia , Tratos Piramidais/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Reflexo H/fisiologia , Humanos , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/fisiologia , Fatores de Tempo , Estimulação Magnética Transcraniana/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos , Extremidade Superior/fisiologia
9.
Pain ; 152(2): 370-375, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21159430

RESUMO

Aiming at developing a new, noninvasive approach to spinal cord neuromodulation, we evaluated whether transcutaneous direct current (DC) stimulation induces long-lasting changes in the central pain pathways in human beings. A double-blind crossover design was used to investigate the effects of anodal direct current (2mA, 15min) applied on the skin overlying the thoracic spinal cord on the lower-limb flexion reflex in a group of 11 healthy volunteers. To investigate whether transcutaneous spinal cord DC stimulation (tsDCS) acts indirectly on the nociceptive reflex by modulating excitability in mono-oligosynaptic segmental reflex pathways, we also evaluated the H-reflex size from soleus muscle after tibial nerve stimulation. In our healthy subjects, anodal thoracic tsDCS reduced the total lower-limb flexion reflex area by 40.25% immediately after stimulation (T0) and by 46.9% 30min after stimulation offset (T30). When we analyzed the 2 lower-limb flexion reflex components (RII tactile and RIII nociceptive) separately, we found that anodal tsDCS induced a significant reduction in RIII area with a slight but not significant effect on RII area. After anodal tsDCS, the RIII area decreased by 27% at T0 and by 28% at T30. Both sham and active tsDCS left all the tested H-reflex variables unchanged. None of our subjects reported adverse effects after active stimulation. These results suggest that tsDCS holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain. Thoracic transcutaneous direct current stimulation induces depression of nociceptive lower limb flexion reflex in human beings that persists after stimulation offset; this form of stimulation holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain.


Assuntos
Perna (Membro)/fisiologia , Inibição Neural/fisiologia , Manejo da Dor , Dor/fisiopatologia , Reflexo/fisiologia , Medula Espinal/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Perna (Membro)/inervação , Masculino , Adulto Jovem
10.
Mov Disord ; 25(3): 300-8, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20108375

RESUMO

Deep brain stimulation (DBS) of the ventralis oralis (VO) complex of the thalamus improves tics in patients with Tourette syndrome (TS). To neurophysiologically describe the VO complex we recorded, in seven patients with TS undergoing DBS electrode implantation, single-unit activity during surgery and local field potentials (LFPs) a few days after surgery. Single unit recordings showed that the VO complex is characterized by a localized pattern of bursting neuronal activity. LFP spectra demonstrated that VO of TS patients has a prominent oscillatory activity at low frequencies (2-7 Hz) and in the alpha-band (8-13 Hz), and a virtually absent beta activity. In each patient, the main LFP frequency significantly correlated with single-unit interburst frequency. In conclusion, we observed an oscillatory bursting activity in the VO as target region in patients with severe TS undergoing DBS surgery.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Evocados/fisiologia , Neurônios/fisiologia , Tálamo/patologia , Síndrome de Tourette/patologia , Adulto , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Análise Espectral/métodos , Tálamo/fisiopatologia , Síndrome de Tourette/terapia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA