Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 68(8): 1430-1438, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30971437

RESUMO

OBJECTIVE: To investigate the underlying mechanisms behind changes in glucose homeostasis with delivery of propionate to the human colon by comprehensive and coordinated analysis of gut bacterial composition, plasma metabolome and immune responses. DESIGN: Twelve non-diabetic adults with overweight and obesity received 20 g/day of inulin-propionate ester (IPE), designed to selectively deliver propionate to the colon, a high-fermentable fibre control (inulin) and a low-fermentable fibre control (cellulose) in a randomised, double-blind, placebo-controlled, cross-over design. Outcome measurements of metabolic responses, inflammatory markers and gut bacterial composition were analysed at the end of each 42-day supplementation period. RESULTS: Both IPE and inulin supplementation improved insulin resistance compared with cellulose supplementation, measured by homeostatic model assessment 2 (mean±SEM 1.23±0.17 IPE vs 1.59±0.17 cellulose, p=0.001; 1.17±0.15 inulin vs 1.59±0.17 cellulose, p=0.009), with no differences between IPE and inulin (p=0.272). Fasting insulin was only associated positively with plasma tyrosine and negatively with plasma glycine following inulin supplementation. IPE supplementation decreased proinflammatory interleukin-8 levels compared with cellulose, while inulin had no impact on the systemic inflammatory markers studied. Inulin promoted changes in gut bacterial populations at the class level (increased Actinobacteria and decreased Clostridia) and order level (decreased Clostridiales) compared with cellulose, with small differences at the species level observed between IPE and cellulose. CONCLUSION: These data demonstrate a distinctive physiological impact of raising colonic propionate delivery in humans, as improvements in insulin sensitivity promoted by IPE and inulin were accompanied with different effects on the plasma metabolome, gut bacterial populations and markers of systemic inflammation.


Assuntos
Microbioma Gastrointestinal/fisiologia , Insulina/metabolismo , Inulina , Metaboloma/fisiologia , Obesidade , Sobrepeso , Adulto , Índice de Massa Corporal , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Fezes/microbiologia , Feminino , Humanos , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Inulina/administração & dosagem , Inulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/dietoterapia , Obesidade/metabolismo , Sobrepeso/diagnóstico , Sobrepeso/dietoterapia , Sobrepeso/metabolismo , Propionatos/administração & dosagem , Propionatos/metabolismo , Resultado do Tratamento
2.
Sci Rep ; 7(1): 13270, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038461

RESUMO

The contribution of the gut microbiota to the metabolism of cholesterol is not well understood. In this study, we identify 21 fosmid clones from a human gut microbiome metagenomic library that, when expressed in Escherichia coli, produce halos on LB agar supplemented with 0.01% (w/v) cholesterol (LBC agar). Analysis of 14 of these clones revealed that they all share a fragment of DNA with homology to the genome of Bacteroides vulgatus. The gene responsible for halo production on LBC agar, named choA, was identified as an N-acyltransferase known to produce an acylated glycine molecule called commendamide. In this study we show that commendamide is capable of producing a halo on LBC agar suggesting that this molecule is solubilizing the cholesterol micelles in LBC agar. We also show that commendamide is responsible for the previously described hemolytic activity associated with the choA orthologue in Bacteroides fragilis. A functional analysis of ChoA identified 2 amino acids that are important for commendamide biosynthesis and we present phylogenetic and functional data showing that orthologues of choA are found only in the order Bacteroidales. Therefore, the production of commendamide may be an adaptation to the environments colonized by the Bacteroidales, including the mammalian gut.


Assuntos
Colesterol/metabolismo , Microbioma Gastrointestinal/fisiologia , Glicina/metabolismo , Bacteroides/metabolismo , Bacteroides fragilis/metabolismo , Colesterol/química , Escherichia coli/metabolismo , Microbioma Gastrointestinal/genética , Glicina/química , Hemólise , Filogenia
3.
Nat Microbiol ; 2: 17057, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440276

RESUMO

The leading probiotics currently available to consumers are generally drawn from a narrow range of organisms. Knowledge of the gut microbiota and its constituent actors is changing this paradigm, particularly given the phylogenetic range and relatively unknown characteristics of the organisms under investigation as novel therapeutics. For this reason, and because their development is likely to be more amenable to a pharmaceutical than a food delivery route, these organisms are often operationally referred to as next-generation probiotics, a concept that overlaps with the emerging concept of live biotherapeutic products. The latter is a class of organisms developed exclusively for pharmaceutical application. In this Perspective, we discuss what lessons have been learned from working with traditional probiotics, explore the kinds of organisms that are likely to be used as novel microbial therapeutics, discuss the regulatory framework required, and propose how scientists may meet this challenge.


Assuntos
Microbioma Gastrointestinal , Probióticos , Bifidobacterium , Terapia Biológica/métodos , Terapia Biológica/tendências , Indústria Farmacêutica/legislação & jurisprudência , Indústria Farmacêutica/tendências , Humanos , Lactobacillus , Filogenia , Probióticos/uso terapêutico
4.
FEMS Microbiol Ecol ; 69(1): 1-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19486153

RESUMO

The role that microorganisms play in the biological removal of phosphate from wastewater streams has received sustained interest since its initial observation over 30 years ago. Recent advances in 'omic'-based approaches have greatly advanced our knowledge in this field and facilitated a refinement of existing enhanced biological phosphate removal (EBPR) models, which were primarily based on culture-dependent approaches that had predominantly been used to investigate the process. This minireview will focus on the recent advances made in our overall understanding of the EBPR process resulting from the use of 'omic'-based methodologies.


Assuntos
Fósforo/metabolismo , Eliminação de Resíduos Líquidos/métodos , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Aerobiose , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Genômica/métodos , Proteômica/métodos , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA