Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 150: 145-152, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30917915

RESUMO

Stress-related psychiatric disorders are mental conditions that affect mood, cognition and behavior and arise because of the impact of prolonged stress on the central nervous system (CNS). Acetyl-L-carnitine (ALC) is an acetyl ester of L-carnitine that easily crosses the blood-brain barrier and was recently found to be decreased in patients with major depressive disorder. ALC plays a role in energy metabolism and is widely consumed as a nutritional supplement to improve physical performance. In this study, our objective was to evaluate the effects of ALC treatment (0.1 mg/L, 10 min) for 7 days on behavior and oxidative stress in zebrafish subjected to unpredictable chronic stress (UCS) protocol. Behavioral outcomes were assessed in the novel tank test, and parameters of oxidative status (lipid peroxidation and antioxidant defenses) were evaluated in the brain using colorimetric methods. According to our previous findings, UCS increased anxiety-like behavior and lipid peroxidation, while it decreased non-protein thiol levels and superoxide dismutase activity. However, ALC reversed the anxiety-like behavior and oxidative damage in stressed animals, while it was devoid of effect in control animals. Although our data reinforce the neuroprotective potential of ALC in the treatment of psychiatric disorders related to stress, further investigations are required to clarify its mechanisms of action and confirm its efficacy.


Assuntos
Acetilcarnitina/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Acetilcarnitina/uso terapêutico , Animais , Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Peixe-Zebra
2.
Pharm Biol ; 53(10): 1488-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898223

RESUMO

CONTEXT: Despite several studies on the effects of Solidago chilensis Meyen (Asteraceae), the phytochemical and hypolipidemic properties remain underappreciated. OBJECTIVE: This study evaluates the hypolipidemic and antioxidant effects of hydroalcoholic extract (HE) and quercetrin from S. chilensis aerial parts in cholesterol-fed rats. MATERIALS AND METHODS: The HE was analyzed by high-performance liquid chromatography, followed by quercetrin isolation. Hypercholesterolemic rats (1% cholesterol and 0.5% cholic acid for 15 d) were treated with HE (150, 300, and 600 mg/kg p.o.; n = 6), simvastatin (4 mg/kg p.o.; n = 6), or quercetrin (10 mg/kg p.o.; n = 6) once a day for 30 d. During this period, a high-cholesterol diet was maintained until the 30th day of treatment. RESULTS: Rats treated with HE (150, 300, and 600 mg/kg) and quercetrin showed decreased serum levels of total cholesterol (-19.9, -27.5, -31.0, and -39.4%), lipoprotein-cholesterol (-36.0, -37.5, -43.3, and -59.4%), and triacylglycerides (-15.6, -23.5, -29.8, and -27.2%) when compared with the control group similar to simvastatin. Moreover, treatment with HE and quercetrin decreased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity (35.1% on average) and increased fecal cholesterol levels (38.2% on average). DISCUSSION AND CONCLUSIONS: Our results suggest that hypolipidemic effects of HE are associated with it modulating the activity of HMG-CoA reductase and its interference in the reabsorption and/or excretion of intestinal lipids. Solidago chilensis and its main constituent, quercetrin, may thus be effective as cholesterol-lowering agents and in preventing atherosclerosis.


Assuntos
Colesterol na Dieta/efeitos adversos , Hipercolesterolemia/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Quercetina/análogos & derivados , Solidago , Animais , Relação Dose-Resposta a Droga , Hipercolesterolemia/sangue , Hipercolesterolemia/induzido quimicamente , Hipolipemiantes/isolamento & purificação , Masculino , Componentes Aéreos da Planta , Extratos Vegetais/isolamento & purificação , Quercetina/isolamento & purificação , Quercetina/uso terapêutico , Ratos , Ratos Wistar , Resultado do Tratamento
3.
PLoS One ; 9(10): e107299, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330300

RESUMO

Methotrexate (MTX) is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2) gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs) obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV) was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM) than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX) levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1ß, IL-6, TNFα and Igγ) and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results suggest that potential pharmacogenetic effect on the cytotoxic response to MTX due differential redox status of cells carriers different SOD2 genotypes.


Assuntos
Metotrexato/farmacologia , Polimorfismo de Nucleotídeo Único , Superóxido Dismutase/genética , Antioxidantes/metabolismo , Caspases/genética , Caspases/metabolismo , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Fluoresceínas/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA