Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0274753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112659

RESUMO

Nowadays, fungal infections increase, and the demand of novel antifungal agents is constantly rising. In the present study, silver, titanium dioxide, cobalt (II) hydroxide and cobalt (II,III) oxide nanomaterials have been synthesized from Spirulina platensis extract. The synthesis mechanism has been studied using GCMS and FTIR thus confirming the involvement of secondary metabolites, mainly amines. The obtained products have been analysed using XRD, SEM, TGA and zeta potential techniques. The findings revealed average crystallite size of 15.22 nm with 9.72 nm for oval-shaped silver nanoparticles increasing to 26.01 nm and 24.86 nm after calcination and 4.81 nm for spherical-shaped titanium dioxide nanoparticles which decreased to 4.62 nm after calcination. Nanoflake shape has been observed for cobalt hydroxide nanomaterials and for cobalt (II, III) oxide with crystallite size of 3.52 nm and 13.28 nm, respectively. Silver nanoparticles showed the best thermal and water dispersion stability of all the prepared structures. Once subjected to three different Candida species (C. albicans, C. glabrata, and C. krusei) silver nanoparticles and cobalt (II) hydroxide nanomaterials showed strong antifungal activity at 50 µg/mL with minimum inhibitory concentration (MIC) values. After light exposition, MIC values for nanomaterials decreased (to 12.5 µg/mL) for C. krusei and increased (100 µg/mL) for C. albicans and C. glabrata.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Aminas , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans , Candida glabrata , Cobalto , Nanopartículas Metálicas/química , Óxidos , Extratos Vegetais/farmacologia , Prata/química , Spirulina , Titânio , Água
2.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736728

RESUMO

Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA