Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 255: 119175, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390460

RESUMO

OBJECTIVE: Gamma synchrony is a fundamental functional property of the cerebral cortex, impaired in multiple neuropsychiatric conditions (i.e. schizophrenia, Alzheimer's disease, stroke etc.). Auditory stimulation in the gamma range allows to drive gamma synchrony of the entire cortical mantle and to estimate the efficiency of the mechanisms sustaining it. As gamma synchrony depends strongly on the interplay between parvalbumin-positive interneurons and pyramidal neurons, we hypothesize an association between cortical thickness and gamma synchrony. To test this hypothesis, we employed a combined magnetoencephalography (MEG) - Magnetic Resonance Imaging (MRI) study. METHODS: Cortical thickness was estimated from anatomical MRI scans. MEG measurements related to exposure of 40 Hz amplitude modulated tones were projected onto the cortical surface. Two measures of cortical synchrony were considered: (a) inter-trial phase consistency at 40 Hz, providing a vertex-wise estimation of gamma synchronization, and (b) phase-locking values between primary auditory cortices and whole cortical mantle, providing a measure of long-range cortical synchrony. A correlation between cortical thickness and synchronization measures was then calculated for 72 MRI-MEG scans. RESULTS: Both inter-trial phase consistency and phase locking values showed a significant positive correlation with cortical thickness. For inter-trial phase consistency, clusters of strong associations were found in the temporal and frontal lobes, especially in the bilateral auditory and pre-motor cortices. Higher phase-locking values corresponded to higher cortical thickness in the frontal, temporal, occipital and parietal lobes. DISCUSSION AND CONCLUSIONS: In healthy subjects, a thicker cortex corresponds to higher gamma synchrony and connectivity in the primary auditory cortex and beyond, likely reflecting underlying cell density involved in gamma circuitries. This result hints towards an involvement of gamma synchrony together with underlying brain structure in brain areas for higher order cognitive functions. This study contributes to the understanding of inherent cortical functional and structural brain properties, which might in turn constitute the basis for the definition of useful biomarkers in patients showing aberrant gamma synchronization.


Assuntos
Córtex Auditivo , Esquizofrenia , Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Córtex Cerebral/diagnóstico por imagem , Potenciais Evocados Auditivos/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos
2.
Brain Struct Funct ; 227(5): 1831-1842, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35312868

RESUMO

Successful navigation relies on the ability to identify, perceive, and correctly process the spatial structure of a scene. It is well known that visual mental imagery plays a crucial role in navigation. Indeed, cortical regions encoding navigationally relevant information are also active during mental imagery of navigational scenes. However, it remains unknown whether their intrinsic activity and connectivity reflect the individuals' ability to imagine a scene. Here, we primarily investigated the intrinsic causal interactions among scene-selective brain regions such as Parahipoccampal Place Area (PPA), Retrosplenial Complex, and Occipital Place Area (OPA) using Dynamic Causal Modelling for resting-state functional magnetic resonance data. Second, we tested whether resting-state effective connectivity parameters among scene-selective regions could reflect individual differences in mental imagery in our sample, as assessed by the self-reported Vividness of Visual Imagery Questionnaire. We found an inhibitory influence of occipito-medial on temporal regions, and an excitatory influence of more anterior on more medial and posterior brain regions. Moreover, we found that a key role in imagery is played by the connection strength from OPA to PPA, especially in the left hemisphere, since the influence of the signal between these scene-selective regions positively correlated with good mental imagery ability. Our investigation contributes to the understanding of the complexity of the causal interaction among brain regions involved in navigation and provides new insight in understanding how an essential ability, such as mental imagery, can be explained by the intrinsic fluctuation of brain signal.


Assuntos
Mapeamento Encefálico , Individualidade , Encéfalo , Humanos , Imageamento por Ressonância Magnética
3.
Neuroimage ; 213: 116699, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32179104

RESUMO

Global signal (GS) is an ubiquitous construct in resting state functional magnetic resonance imaging (rs-fMRI), associated to nuisance, but containing by definition most of the neuronal signal. Global signal regression (GSR) effectively removes the impact of physiological noise and other artifacts, but at the same time it alters correlational patterns in unpredicted ways. Performing GSR taking into account the underlying physiology (mainly the blood arrival time) has been proven to be beneficial. From these observations we aimed to: 1) characterize the effect of GSR on network-level functional connectivity in a large dataset; 2) assess the complementary role of global signal and vessels; and 3) use the framework of partial information decomposition to further look into the joint dynamics of the global signal and vessels, and their respective influence on the dynamics of cortical areas. We observe that GSR affects intrinsic connectivity networks in the connectome in a non-uniform way. Furthermore, by estimating the predictive information of blood flow and the global signal using partial information decomposition, we observe that both signals are present in different amounts across intrinsic connectivity networks. Simulations showed that differences in blood arrival time can largely explain this phenomenon, while using hemodynamic and calcium mouse recordings we were able to confirm the presence of vascular effects, as calcium recordings lack hemodynamic information. With these results we confirm network-specific effects of GSR and the importance of taking blood flow into account for improving de-noising methods. Additionally, and beyond the mere issue of data denoising, we quantify the diverse and complementary effect of global and vessel BOLD signals on the dynamics of cortical areas.


Assuntos
Artefatos , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
4.
Psychophysiology ; 56(7): e13347, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30888710

RESUMO

Video games are enjoyed most when the level and speed of the game match the players' skills. An optimal balance between challenges and skills triggers the subjective experience of "flow," a focused motivation leading to a feeling of spontaneous joy. The present research investigates the behavioral and neural correlates of a paradigm aimed to assess the players' subjective experience during gameplay. Attentional engagement changes were assessed first at the behavioral level and in a second stage by means of EEG recordings. An auditory novelty oddball paradigm was implemented as a secondary task while subjects played in three conditions: boredom, frustration, and flow. We found higher reaction times and error rates in the flow condition. In a second stage, EEG time domain analysis revealed a significantly delayed response-locked frontocentral negative deflection during flow, likely signaling the reallocation of attentional resources. Source reconstruction analyses showed that the brain regions responsible for the genesis of this negativity were located within the medial frontal cortex. Frequency domain analyses showed a significant power increase only in the alpha band for the flow condition. Our results showed that this alpha power enhancement was correlated with faster reaction times. This suggests that frontal alpha changes recorded as maximal at the midfrontal lines during flow might be related to inhibitory top-down cognitive control processes.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Jogos de Vídeo/psicologia , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
5.
PLoS One ; 9(6): e100012, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24979748

RESUMO

BACKGROUND: Recent studies have been shown that functional connectivity of cerebral areas is not a static phenomenon, but exhibits spontaneous fluctuations over time. There is evidence that fluctuating connectivity is an intrinsic phenomenon of brain dynamics that persists during anesthesia. Lately, point process analysis applied on functional data has revealed that much of the information regarding brain connectivity is contained in a fraction of critical time points of a resting state dataset. In the present study we want to extend this methodology for the investigation of resting state fMRI spatial pattern changes during propofol-induced modulation of consciousness, with the aim of extracting new insights on brain networks consciousness-dependent fluctuations. METHODS: Resting-state fMRI volumes on 18 healthy subjects were acquired in four clinical states during propofol injection: wakefulness, sedation, unconsciousness, and recovery. The dataset was reduced to a spatio-temporal point process by selecting time points in the Posterior Cingulate Cortex (PCC) at which the signal is higher than a given threshold (i.e., BOLD intensity above 1 standard deviation). Spatial clustering on the PCC time frames extracted was then performed (number of clusters = 8), to obtain 8 different PCC co-activation patterns (CAPs) for each level of consciousness. RESULTS: The current analysis shows that the core of the PCC-CAPs throughout consciousness modulation seems to be preserved. Nonetheless, this methodology enables to differentiate region-specific propofol-induced reductions in PCC-CAPs, some of them already present in the functional connectivity literature (e.g., disconnections of the prefrontal cortex, thalamus, auditory cortex), some others new (e.g., reduced co-activation in motor cortex and visual area). CONCLUSION: In conclusion, our results indicate that the employed methodology can help in improving and refining the characterization of local functional changes in the brain associated to propofol-induced modulation of consciousness.


Assuntos
Anestésicos Intravenosos , Giro do Cíngulo/fisiologia , Vias Neurais/fisiologia , Propofol , Inconsciência/induzido quimicamente , Vigília/fisiologia , Adulto , Anestesia Geral , Córtex Auditivo/anatomia & histologia , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Estado de Consciência/fisiologia , Feminino , Lobo Frontal/anatomia & histologia , Lobo Frontal/fisiologia , Giro do Cíngulo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA