Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
bioRxiv ; 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38106022

RESUMO

Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma. Plasma membrane-enriched mass spectrometry identified 1,461 cell surface proteins in cell lines and 1,401 in xenograft models, respectively. Additional proteogenomic analyses revealed 60 high-confidence candidate immunotherapeutic targets and we prioritized Delta-like canonical notch ligand 1 (DLK1) for further study. High expression of DLK1 directly correlated with the presence of a super-enhancer spanning the DLK1 locus. Robust cell surface expression of DLK1 was validated by immunofluorescence, flow cytometry, and immunohistochemistry. Short hairpin RNA mediated silencing of DLK1 in neuroblastoma cells resulted in increased cellular differentiation. ADCT-701, a DLK1-targeting antibody-drug conjugate (ADC), showed potent and specific cytotoxicity in DLK1-expressing neuroblastoma xenograft models. Moreover, DLK1 is highly expressed in several adult cancer types, including adrenocortical carcinoma (ACC), pheochromocytoma/paraganglioma (PCPG), hepatoblastoma, and small cell lung cancer (SCLC), suggesting potential clinical benefit beyond neuroblastoma. Taken together, our study demonstrates the utility of comprehensive cancer surfaceome characterization and credentials DLK1 as an immunotherapeutic target. Highlights: Plasma membrane enriched proteomics defines surfaceome of neuroblastomaMulti-omic data integration prioritizes DLK1 as a candidate immunotherapeutic target in neuroblastoma and other cancersDLK1 expression is driven by a super-enhancer DLK1 silencing in neuroblastoma cells results in cellular differentiation ADCT-701, a DLK1-targeting antibody-drug conjugate, shows potent and specific cytotoxicity in DLK1-expressing neuroblastoma preclinical models.

2.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584517

RESUMO

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Assuntos
Leucemia , Neuroblastoma , RNA Longo não Codificante , Adulto , Humanos , Criança , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Neuroblastoma/genética , Leucemia/genética , Genômica , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica
3.
Mol Oncol ; 15(8): 2156-2171, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33523558

RESUMO

Rhabdomyosarcoma (RMS) is an aggressive pediatric soft tissue sarcoma. There are two main subtypes of RMS, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma. ARMS typically encompasses fusion-positive rhabdomyosarcoma, which expresses either PAX3-FOXO1 or PAX7-FOXO1 fusion proteins. There are no targeted therapies for ARMS; however, recent studies have begun to illustrate the cooperation between epigenetic proteins and the PAX3-FOXO1 fusion, indicating that epigenetic proteins may serve as targets in ARMS. Here, we investigate the contribution of BMI1, given the established role of this epigenetic regulator in sustaining aggression in cancer. We determined that BMI1 is expressed across ARMS tumors, patient-derived xenografts, and cell lines. We depleted BMI1 using RNAi and inhibitors (PTC-209 and PTC-028) and found that this leads to a decrease in cell growth/increase in apoptosis in vitro, and delays tumor growth in vivo. Our data suggest that BMI1 inhibition activates the Hippo pathway via phosphorylation of LATS1/2 and subsequent reduction in YAP levels and YAP/TAZ target genes. These results identify BMI1 as a potential therapeutic vulnerability in ARMS and warrant further investigation of BMI1 in ARMS and other sarcomas.


Assuntos
Proliferação de Células/fisiologia , Epigênese Genética/fisiologia , Complexo Repressor Polycomb 1/fisiologia , Rabdomiossarcoma/patologia , Apoptose/fisiologia , Linhagem Celular Tumoral , Xenoenxertos , Via de Sinalização Hippo , Humanos , Fosforilação , Complexo Repressor Polycomb 1/genética , Interferência de RNA , Rabdomiossarcoma/metabolismo
4.
Clin Cancer Res ; 25(7): 2278-2289, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563935

RESUMO

PURPOSE: Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy. EXPERIMENTAL DESIGN: DNA damage and changes in cell signaling following in vitro prexasertib treatment in pediatric sarcoma cell lines were analyzed by Western blot and high content imaging. Antitumor activity of prexasertib as a single agent or in combination with different chemotherapies was explored in cell line-derived (CDX) and patient-derived xenograft (PDX) mouse models representing nine different pediatric cancer histologies. RESULTS: Pediatric sarcoma cell lines were highly sensitive to prexasertib treatment in vitro, resulting in activation of the DNA damage response. Two PDX models of desmoplastic small round cell tumor and one malignant rhabdoid tumor CDX model responded to prexasertib with complete regression. Prexasertib monotherapy also elicited robust responses in mouse models of rhabdomyosarcoma. Concurrent administration with chemotherapy was sufficient to overcome innate resistance or prevent acquired resistance to prexasertib in preclinical models of neuroblastoma, osteosarcoma, and Ewing sarcoma, or alveolar rhabdomyosarcoma, respectively. CONCLUSIONS: Prexasertib has significant antitumor effects as a monotherapy or in combination with chemotherapy in multiple preclinical models of pediatric cancer. These findings support further investigation of prexasertib in pediatric malignancies.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Criança , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Sarcoma de Ewing , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Pediatr Blood Cancer ; 64(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27786412

RESUMO

VS-4718, a novel inhibitor of focal adhesion kinase (FAK), was tested against the Pediatric Preclinical Testing Program's (PPTP's) in vitro cell line panel and showed a median relative IC50 of 1.22 µM. VS-4718 was tested in vivo against the PPTP xenograft models using a dose of 50 mg/kg administered by the oral route twice daily for 21 days. VS-4718 induced significant differences in an event-free survival distribution compared with control in 18 of 36 of the evaluable solid tumor xenografts and in 0 of 8 acute lymphoblastic leukemia (ALL) xenografts, but no xenograft lines showed tumor regression. Future plans include further evaluation of the role of FAK inhibition in combination with ABL kinase inhibitors for Ph+ ALL.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancer Causes Control ; 27(10): 1209-18, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27541142

RESUMO

PURPOSE: Neuroblastoma is a childhood cancer of the sympathetic nervous system with embryonic origins. Previous epidemiologic studies suggest maternal vitamin supplementation during pregnancy reduces the risk of neuroblastoma. We hypothesized offspring and maternal genetic variants in folate-related and choline-related genes are associated with neuroblastoma and modify the effects of maternal intake of folate, choline, and folic acid. METHODS: The Neuroblastoma Epidemiology in North America (NENA) study recruited 563 affected children and their parents through the Children's Oncology Group's Childhood Cancer Research Network. We used questionnaires to ascertain pre-pregnancy supplementation and estimate usual maternal dietary intake of folate, choline, and folic acid. We genotyped 955 genetic variants related to folate or choline using DNA extracted from saliva samples and used a log-linear model to estimate both child and maternal risk ratios and stratum-specific risk ratios for gene-environment interactions. RESULTS: Overall, no maternal or offspring genotypic results met criteria for a false discovery rate (FDR) Q-value <0.2. Associations were also null for gene-environment interaction with pre-pregnancy vitamin supplementation, dietary folic acid, and folate. FDR-significant gene-choline interactions were found for offspring SNPs rs10489810 and rs9966612 located in MTHFD1L and TYMS, respectively, with maternal choline dietary intake dichotomized at the first quartile. CONCLUSION: These results suggest that variants related to one-carbon metabolism are not strongly associated with neuroblastoma. Choline-related variants may play a role; however, the functional consequences of the interacting variants are unknown and require independent replication.


Assuntos
Colina/administração & dosagem , Ácido Fólico/administração & dosagem , Neuroblastoma/epidemiologia , Neuroblastoma/genética , Pré-Escolar , Colina/metabolismo , Suplementos Nutricionais/estatística & dados numéricos , Feminino , Ácido Fólico/metabolismo , Interação Gene-Ambiente , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Neuroblastoma/metabolismo , Razão de Chances , Polimorfismo de Nucleotídeo Único , Gravidez , Sistema de Registros , Estados Unidos/epidemiologia
7.
Pediatr Blood Cancer ; 63(10): 1744-52, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27238606

RESUMO

BACKGROUND: MK-8242 is an inhibitor of MDM2 that stabilizes the tumor suppressor TP53 and induces growth arrest or apoptosis downstream of TP53 induction. PROCEDURES: MK-8242 was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations from 1.0 nM to 10.0 µM and against the PPTP in vivo xenograft panels using oral gavage on Days 1-5 and Day 15-19 at a dose of 125 mg/kg (solid tumors) or 75 mg/kg (acute lymphoblastic leukemia [ALL] models). RESULTS: The median IC50 for MK-8242 was 0.07 µM for TP53 wild-type cell lines versus >10 µM for TP53 mutant cell lines. MK-8242 induced a twofold or greater delay in time to event in 10 of 17 (59%) of TP53 wild-type solid tumor xenografts, excluding osteosarcoma xenografts that have very low TP53 expression. Objective responses were observed in seven solid tumor xenografts representing multiple histotypes. For the systemic-disease ALL panel, among eight xenografts there were two complete responses (CRs) and six partial responses (PRs). Two additional MLL-rearranged xenografts (MV4;11 and RS4;11) grown subcutaneously showed maintained CR and PR, respectively. The expected pharmacodynamic responses to TP53 activation were observed in TP53 wild-type models treated with MK-8242. Pharmacokinetic analysis showed that MK-8242 drug exposure in SCID mice appears to exceed that was observed in adult phase 1 trials. CONCLUSIONS: MK-8242-induced tumor regressions across multiple solid tumor histotypes and induced CRs or PRs for most ALL xenografts. This activity was observed at MK-8242 drug exposures that appear to exceed those observed in human phase 1 trials.


Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Criança , Citarabina/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Genes p53 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Pediatr Blood Cancer ; 62(1): 91-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25263539

RESUMO

BACKGROUND: BMN 673 is a potent inhibitor of poly-ADP ribose polymerase (PARP) that is in clinical testing with a primary focus on BRCA-mutated cancers. BMN 673 is active both through inhibiting PARP catalytic activity and by tightly trapping PARP to DNA at sites of single strand breaks. PROCEDURE: BMN 673 was tested in vitro at concentrations ranging from 0.1 nM to 1 µM and in vivo at a daily dose of 0.33 mg/kg administered orally twice daily (Mon-Fri) and once daily on weekends (solid tumors) for 28 days. RESULTS: The median relative IC50 (rIC50 ) concentration against the PPTP cell lines was 25.8 nM. The median rIC50 for the Ewing cell lines was lower than for the remaining cell lines (6.4 vs. 31.1 nM, respectively). In vivo BMN 673 induced statistically significant differences in EFS distribution in 17/43 (39.5%) xenograft models. Three objective regressions were observed: a complete response (CR) in a medulloblastoma line (BT-45), a maintained CR in a Wilms tumor line (KT-10), and a maintained CR in an ependymoma line (BT-41). BMN 673 maintained its high level of activity against KT-10 with a threefold reduction in dose. KT-10 possesses a truncating mutation in PALB2 analogous to PALB2 mutations associated with hereditary breast and ovarian cancer that abrogate homologous recombination (HR) repair. CONCLUSIONS: The PPTP results suggest that single agent BMN 673 may have limited clinical activity against pediatric cancers. Single agent activity is more likely for patients whose tumors have defects in HR repair.


Assuntos
Inibidores Enzimáticos/farmacologia , Mutação/genética , Proteínas Nucleares/genética , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Supressoras de Tumor/genética , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Avaliação Pré-Clínica de Medicamentos , Proteína do Grupo de Complementação N da Anemia de Fanconi , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
9.
Pediatr Blood Cancer ; 61(2): 245-52, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038993

RESUMO

BACKGROUND: Quisinostat (JNJ-26481585) is a second-generation pyrimidyl-hydroxamic acid histone deacetylase (HDAC) inhibitor with high cellular potency towards Class I and II HDACs. Quisinostat was selected for clinical development as it showed prolonged pharmacodynamic effects in vivo and demonstrated improved single agent antitumoral efficacy compared to other analogs. PROCEDURES: Quisinostat was tested against the PPTP in vitro panel at concentrations ranging from 1.0 nM to 10 µM and was tested against the PPTP in vivo panels at a dose of 5 mg/kg (solid tumors) or 2.5 mg/kg (ALL models) administered intraperitoneally daily × 21. RESULTS: In vitro quisinostat demonstrated potent cytotoxic activity, with T/C% values approaching 0% for all of the cell lines at the highest concentration tested. The median relative IC50 value for the PPTP cell lines was 2.2 nM (range <1-19 nM). quisinostat induced significant differences in EFS distribution compared to control in 21 of 33 (64%) of the evaluable solid tumor xenografts and in 4 of 8 (50%) of the evaluable ALL xenografts. An objective response was observed in 1 of 33 solid tumor xenografts while for the ALL panel, two xenografts achieved complete response (CR) or maintained CR, and a third ALL xenograft achieved stable disease. CONCLUSIONS: Quisinostat demonstrated broad activity in vitro, and retarded growth in the majority of solid tumor xenografts studied. The most consistent in vivo activity signals observed were for the glioblastoma xenografts and T-cell ALL xenografts.


Assuntos
Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Animais , Criança , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/patologia , Células Tumorais Cultivadas
10.
Pediatr Blood Cancer ; 60(4): 633-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22753001

RESUMO

BACKGROUND: RG7112 is a selective inhibitor of p53-MDM2 binding that frees p53 from negative control, activating the p53 pathway in cancer cells leading to cell cycle arrest and apoptosis. RG7112 was selected for evaluation by the Pediatric Preclinical Testing Program (PPTP) due to the relatively low incidence of p53 mutations in pediatric cancers compared with adult malignancies. PROCEDURES: RG7112 and its inactive enantiomer RG7112i were evaluated against the 23 cell lines of the PPTP in vitro panel using 96 hours exposure (1 nM to 10 µM). It was tested against the PPTP in vivo panel focusing on p53 wild-type (WT) xenografts at a dose of 100 mg/kg daily for 14 days followed by 4 weeks of observation. Response outcomes were related to MDM2 and p53 expression datasets (http://pptp.nchresearch.org/data.html). RESULTS: RG7112 demonstrated cytotoxic activity with a lower median IC(50) for p53 WT versus p53 mutant cell lines (approximately 0.4 µM vs. >10 µM, respectively). RG7112 induced tumor growth inhibition meeting criteria for intermediate activity (EFS T/C > 2) in 10 of 26 (38%) solid tumor xenografts. Objective responses included medulloblastoma, alveolar rhabdomyosarcoma, Wilms, rhabdoid and Ewing sarcoma xenografts. For the ALL panel, there was one partial response, five complete responses and one maintained complete response. The ALL xenografts expressed the highest levels of p53 among the PPTP panels. CONCLUSIONS: RG7112 induced tumor regressions in solid tumors from different histotype panels, and exhibited consistent high-level activity against ALL xenografts. This high level of activity supports prioritization of RG7112 for further evaluation.


Assuntos
Antineoplásicos/farmacologia , Imidazolinas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Pediatr Blood Cancer ; 59(7): 1266-74, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22315240

RESUMO

BACKGROUND: SCH 727965 is a novel drug in clinical development that potently and selectively inhibits CDK1, CDK2, CDK5, and CDK9. The activity of SCH 727965 was evaluated against the PPTP's in vitro and in vivo panels. PROCEDURES: SCH 727965 was tested against the PPTP in vitro panel using 96 hours exposure at concentrations ranging from 0.1 nM to 1.0 µM. It was tested against the PPTP in vivo panels at a dose of 40 mg/kg administered intraperitoneally twice weekly for 2 weeks and repeated at Day 21 with a total observation period of 6 weeks. RESULTS: The median IC(50) value for the cell lines was 7.5 nM, with less than fourfold range between the minimum (3.4 nM) and maximum (11.2 nM) IC(50) values. SCH 727965 demonstrated an activity pattern consistent with cytotoxicity for most of the cell lines. Forty-three xenograft models were studied and SCH 727965 induced significant delays in event free survival distribution compared to control in 23 of 36 (64%) evaluable solid tumor xenografts and in 3 of 7 ALL xenografts. SCH 727965 did not induce objective responses in the solid tumor panels and the best response observed was stable disease for one osteosarcoma xenograft. In the leukemia panel, there were two objective responses with a complete response observed in a single xenograft. CONCLUSIONS: SCH 727965 shows an interesting pattern of activity suggesting its potential applicability against selected childhood cancers, particularly leukemias.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Neoplasias Experimentais/tratamento farmacológico , Compostos de Piridínio/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Tumoral , Criança , Óxidos N-Cíclicos , Intervalo Livre de Doença , Relação Dose-Resposta a Droga , Feminino , Humanos , Indolizinas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Compostos de Piridínio/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Pediatr Blood Cancer ; 58(2): 200-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21548007

RESUMO

BACKGROUND: Genz-644282 is a novel non-camptothecin topoisomerase I poison that is in clinical development. PROCEDURES: Genz-644282 was tested against the PPTP in vitro panel (0.1 nM to 1 µM), and in vivo using three times per week × 2 schedule repeated at day 21 at its maximum tolerated dose (MTD) of 4 mg/kg. Subsequently Genz-644282 was tested at 4, 3, 2, and 1 mg/kg in 3 models to assess the dose-response relationship. mRNA gene signatures predictive for Genz-644282 response in vitro were applied to select 15 tumor models that were evaluated prospectively. RESULTS: In vitro, Genz-644282 demonstrated potent cytotoxic activity with a median IC(50) of 1.2 nM (range 0.2-21.9 nM). In vivo, Genz-644282 at its MTD (4 mg/kg) induced maintained complete responses (MCR) in 6/6 evaluable solid tumor models. At 2 mg/kg Genz-644282 induced CR or MCR in 3/3 tumor models relatively insensitive to topotecan, but there were no objective responses at 1 mg/kg. Further testing at 2 mg/kg showed that Genz-644282 induced objective regressions in 7 of 17 (41%) models. There was a significant correlation between predictive response scores based on Affymetrix U133Plus2 baseline tumor expression profiles and the observed in vivo responses to Genz-644282. CONCLUSIONS: Genz-644282 was highly active within a narrow dose range (2-4 mg/kg), typical of other topoisomerase I poisons. As with other topoisomerase I poisons, how accurately these data will translate to clinical activity will depend upon the drug exposures that can be achieved in children treated with this agent.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo I/química , Naftiridinas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Inibidores da Topoisomerase I/uso terapêutico , Animais , Criança , DNA Topoisomerases Tipo I/metabolismo , Intervalo Livre de Doença , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/mortalidade , Taxa de Sobrevida , Topotecan/uso terapêutico , Carga Tumoral , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Pediatr Blood Cancer ; 58(5): 729-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21630428

RESUMO

BACKGROUND: IMC-A12, a fully human antibody that blocks ligand binding to the Type 1 insulin-like growth factor receptor, and rapamycin, a selective inhibitor of mTORC1 signaling, have both demonstrated significant antitumor activity against PPTP solid tumor models. Here we have evaluated antitumor activity of each agent individually and in combination against nine tumor models. PROCEDURES: IMC-A12 was administered twice weekly and rapamycin was administered daily for 5 days per week for a planned 4 weeks. The impact of combining IMC-A12 with rapamycin was evaluated using two measures: (1) the "therapeutic enhancement" measure, and (2) a linear regression model for time-to-event to formally evaluate for sub- and supra-additivity for the combination compared to the agents used alone. RESULTS: Two osteosarcomas, and one Ewing sarcoma of the nine xenografts tested showed therapeutic enhancement. The combination effect was most dramatic for EW-5 for which PD2 responses of short duration were observed for both single agents and a prolonged PR response was observed for the combination. Both OS-2 and OS-9 showed significantly longer times to progression with the combination compared to either of the single agents, although objective response criteria were not met. CONCLUSIONS: The combination of IMC-A12 with rapamycin was well tolerated, and induced tumor responses that were superior to either single agent alone in several models. These studies confirm reports using other antibodies that inhibit IGF-1 receptor-mediated signaling that indicate enhanced therapeutic effect for this combination, and extend the range of histotypes to encompass additional tumors expressing IGF-1R where this approach may be effective.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Sirolimo/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Pediatr Blood Cancer ; 58(2): 191-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21337679

RESUMO

BACKGROUND: AZD8055 is a small molecule ATP-competitive inhibitor of the serine/threonine kinase mTOR that regulates cap-dependent translation through the mTORC1 complex and Akt activation through the mTORC2 complex. Procedures AZD8055 was tested against the PPTP in vitro panel at concentrations ranging from 1.0 nM to 10 µM and against the PPTP in vivo panels at a dose of 20 mg/kg administered orally daily x 7 for 4 weeks. RESULTS: In vitro the median relative IC(50) for AZD8055 against the PPTP cell lines was 24.7 nM. Relative I/O values >0% (consistent with a cytostatic effect) were observed in 8 cell lines and 15 cell lines showed Relative I/O values ranging from -4.7 to -92.2% (consistent with varying degrees of cytotoxic activity). In vivo AZD8055 induced significant differences in EFS distribution compared to controls in 23 of 36 (64%) evaluable solid tumor xenografts, and 1 of 6 evaluable ALL xenografts. Intermediate activity for the time to event activity measure (EFS T/C >2) was observed in 5 of 32 (16%) solid tumor xenografts evaluable. The best response was stable disease. PD2 (progressive disease with growth delay) was observed in 20 of 36 (55.6%) evaluable solid tumor xenografts. AZD8055 significantly inhibited 4E-BP1, S6, and Akt phosphorylation following day 1 and day 4 dosing, but suppression of mTORC1 or mTORC2 signaling did not predict tumor sensitivity. CONCLUSIONS: AZD8055 demonstrated broad activity in vitro, but at the dose and schedule studied demonstrated limited activity in vivo against the PPTP solid tumor and ALL panels.


Assuntos
Proliferação de Células/efeitos dos fármacos , Morfolinas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Western Blotting , Criança , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/mortalidade , Taxa de Sobrevida , Células Tumorais Cultivadas
15.
Pediatr Blood Cancer ; 58(5): 815-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22052798

RESUMO

RO4929097 is a potent and selective inhibitor of γ-secretase and as a result is able to inhibit Notch pathway signaling. The activity of RO4929097 was evaluated against the in vivo panels of the Pediatric Preclinical Testing Program (PPTP). RO4929097 induced significant differences in event-free survival (EFS) distribution compared to control in 6 of 26 (23%) of the evaluable solid tumor xenografts and in 0 of 8 (0%) of the evaluable ALL xenografts. The most consistent tumor growth delay effects were noted in the osteosarcoma panel. RO4929097 at the dose and schedule evaluated demonstrated little antitumor activity against childhood cancer xenografts.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Benzazepinas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Benzazepinas/farmacologia , Criança , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Pediatr Blood Cancer ; 59(2): 329-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21922647

RESUMO

JNJ-26854165 was originally developed as an activator of p53 capable of inducing apoptosis in cancer cell lines. In vitro, JNJ-26854165 demonstrated cytotoxic activity. The ALL cell line panel had a significantly lower median IC(50) (0.85 µM) than the remaining cell lines. In vivo JNJ-26854165 induced significant differences in EFS distribution compared to control in 18 of 37 solid tumors and in 5 of 7 of the evaluable ALL xenografts. Objective responses were observed in 4 of 37 solid tumor xenografts, and 2 of 7 ALL xenografts achieved PR or CR. Responses were noted in xenografts with both mutant and wild-type p53.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Radiossensibilizantes/farmacologia , Sarcoma/tratamento farmacológico , Triptaminas/farmacologia , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Chemother Pharmacol ; 68(6): 1469-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21484309

RESUMO

PURPOSE: Lestaurtinib (CEP-701), a multi-kinase inhibitor with potent activity against the Trk family of receptor tyrosine kinases, has undergone early phase clinical evaluation in children with relapsed neuroblastoma. We studied the interaction of CEP-701 with isotretinoin (13cRA) and fenretinide (4HPR), two retinoids that have been studied in children with high-risk neuroblastoma. METHODS: In vitro growth inhibition was assessed following a 72-hour drug exposure using the sulforhodamine B (SRB) assay in eight neuroblastoma cell lines with variable TrkB expression. When appropriate, the combination index (CI) of Chou-Talalay was used to characterize the interaction of 13cRA (non-constant ratio) or 4HPR (constant ratio) with CEP-701. RESULTS: The median (range) IC(50) of single-agent CEP-701 across all cell lines was 0.09 (0.08-0.3) µM. The combination of 13cRA and CEP-701 resulted in additive to synergistic interactions in four of the five cell lines studied. Addition of 1 or 5 µM of 13cRA decreased the median (range) CEP-701 IC(50) 1.5-fold (1.1-2.8-fold) and 1.7-fold (1.5-1.8-fold), respectively. With 10 µM 13cRA, less than 50% of cells survived when combined with various concentrations of CEP-701. The combination of 4HPR and CEP-701 trended toward being antagonistic, with a median (range) CI at the ED(50) of 1.3 (1.1-1.5). CONCLUSIONS: The combination of 13cRA and CEP-701 was additive or synergistic in a spectrum of neuroblastoma cell lines, suggesting that these agents can be potentially studied together in the setting of minimal residual disease following intensive chemoradiotherapy for children with high-risk neuroblastoma.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carbazóis/administração & dosagem , Fenretinida/administração & dosagem , Isotretinoína/administração & dosagem , Neuroblastoma/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Furanos , Humanos , Neuroblastoma/patologia , Receptor trkB/fisiologia
18.
Pediatr Blood Cancer ; 57(7): 1124-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21495159

RESUMO

BACKGROUND: Targeted radiotherapy with (131) I-Metaiodobenzylguanidine ((131) I-MIBG) is safe and effective therapy for patients with relapsed neuroblastoma, but anti-tumor activity is sometimes transient. The goal of this study was to determine the safety and efficacy of early (<100 days) second (131) I-MIBG treatment following an effective initial treatment. PROCEDURES: After an initial infusion of 18 mCi/kg (131) I-MIBG, patients with tumor response or stable disease (SD), and available hematopoietic stem cell product, were eligible for additional (131) I-MIBG therapy. Residual thrombocytopenia did not preclude patients from receiving additional treatment. Subsequent treatment was administered a minimum of 6 weeks and maximum 100 days from initial infusion, and subjects could receive subsequent therapy if the same criteria were met. RESULTS: Seventy-six heavily pretreated patients (median 4 prior chemotherapy regimens, range 1-8) with relapsed neuroblastoma were treated with (131) I-MIBG. Response rate to the first infusion was 30%, with 49% showing SD. Response rate among the 41 patients receiving a subsequent second infusion was 29%. After two treatments, 39% of patients experienced a reduction in overall disease burden. Four of five complete responses (CRs) to the initial infusion were maintained, despite all five having disease readily apparent on immediate post-second treatment (131) I-MIBG scanning. Hematologic toxicity was managed with early PBSC support after the second therapy (median: 15 days). CONCLUSIONS: Early second (131) I-MIBG safely reduces disease burden in patients with relapsed neuroblastoma. Patients with CR by conventional (123) I-MIBG scintigraphy may have substantial disease burden apparent on high-dose (131) I-MIBG scintigraphy, supporting consolidation with subsequent (131) I-MIBG therapy in cases of apparent complete remission. Pediatr Blood Cancer 2011; 57: 1124-1129. © 2011 Wiley Periodicals, Inc.


Assuntos
3-Iodobenzilguanidina/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Radioisótopos do Iodo/administração & dosagem , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , 3-Iodobenzilguanidina/efeitos adversos , Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Feminino , Humanos , Infusões Intravenosas , Radioisótopos do Iodo/efeitos adversos , Estimativa de Kaplan-Meier , Masculino , Estadiamento de Neoplasias , Neuroblastoma/mortalidade , Neuroblastoma/patologia , Resultado do Tratamento
19.
Pediatr Blood Cancer ; 57(2): 268-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21360650

RESUMO

BACKGROUND: PG11047 is a novel conformationally restricted analog of the natural polyamine, spermine that lowers cellular endogenous polyamine levels and competitively inhibits natural polyamine functions leading to cancer cell growth inhibition. The activity of PG11047 was evaluated against the PPTP's in vitro and in vivo panels. PROCEDURES: PG11047 was evaluated against the PPTP in vitro panel using 96 hr exposure at concentrations ranging from 10 nM to 100 µM. It was tested against the PPTP in vivo panels at a dose of 100 mg/kg administered by the intraperitoneal route weekly for 6 weeks. RESULTS: In vitro PG11047 demonstrated a concentration-response pattern consistent with cytostatic activity. The median EC(50) for PG11047 was 71 nM. Cell lines of the Ewing sarcoma panel had a lower median EC(50) value compared to the remaining cell lines in the panel, while cell lines of the neuroblastoma panel had a higher median EC(50) value. In vivo PG11047 induced significant differences in EFS distribution compared to control in 5 of 32 (15.6%) of the evaluable solid tumor xenografts and in 0 of 7 (0%) of the evaluable ALL xenografts. The single case of tumor regression occurred in an ependymoma xenograft. CONCLUSIONS: Further pediatric development of PG11047 will require better defining a target population and identifying combinations for which there is a tumor-selective cytotoxic effect. The regression observed for an ependymoma xenograft and the exquisite sensitivity of some Ewing sarcoma cell lines to the antiproliferative effects of PG11047 provide leads for further preclinical investigations.


Assuntos
Neoplasias/tratamento farmacológico , Espermina/análogos & derivados , Espermina/farmacologia , Animais , Linhagem Celular Tumoral , Criança , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 108(8): 3336-41, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21289283

RESUMO

Neuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent. CHK1 mRNA expression was higher in MYC-Neuroblastoma-related (MYCN)-amplified (P < 0.0001) and high-risk (P = 0.03) tumors. Western blotting revealed that CHK1 was constitutively phosphorylated at the ataxia telangiectasia response kinase target site Ser345 and the autophosphorylation site Ser296 in neuroblastoma cell lines. This pattern was also seen in six of eight high-risk primary tumors but not in control nonneuroblastoma cell lines or in seven of eight low-risk primary tumors. Neuroblastoma cells were sensitive to the two CHK1 inhibitors SB21807 and TCS2312, with median IC(50) values of 564 nM and 548 nM, respectively. In contrast, the control lines had high micromolar IC(50) values, indicating a strong correlation between CHK1 phosphorylation and CHK1 inhibitor sensitivity (P = 0.0004). Furthermore, cell cycle analysis revealed that CHK1 inhibition in neuroblastoma cells caused apoptosis during S-phase, consistent with its role in replication fork progression. CHK1 inhibitor sensitivity correlated with total MYC(N) protein levels, and inducing MYCN in retinal pigmented epithelial cells resulted in CHK1 phosphorylation, which caused growth inhibition when inhibited. These data show the power of a functional RNAi screen to identify tractable therapeutical targets in neuroblastoma and support CHK1 inhibition strategies in this disease.


Assuntos
Neuroblastoma/tratamento farmacológico , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , Apoptose/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/patologia , Proteínas Nucleares/análise , Proteínas Oncogênicas/análise , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro , Fase S/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA